The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPE(2504hit)

1941-1960hit(2504hit)

  • Application of the VLC Parallel Transmission Technique to Motion Vector Transmission

    Takashi KASAI  Yukitoshi SANADA  Kiyomichi ARAKI  

     
    LETTER

      Vol:
    E82-A No:12
      Page(s):
    2778-2782

    Recently portable computers and mobile communications have been developed rapidly. Along with the developments of mobile computing environment, the demands of transmitting images over wireless channels are growing. However, high efficiency image coding techniques are not designed for the wireless communication channels. The use of variable length codes (VLCs) in those coding techniques makes a receiver hard to synchronize with the codewords on the noisy channel. On the other hand, a variable length code transmission technique utilizing multicode CDM (Code Division Multiplex) has been proposed. In this paper, the multicode CDM technique is applied to wireless transmission of images compressed by the H. 263 algorithm. Especially, the proposed technique is employed for motion vector transmission. In consequence, the proposed transmission technique reduces the required Eb/N0 as compared with the conventional transmission technique.

  • High-Frequency and High-Speed Devices for Communication Network Systems

    Yasutake HIRACHI  

     
    INVITED PAPER-Information and Communication System

      Vol:
    E82-C No:11
      Page(s):
    1862-1870

    A description for high-speed communication networks for the 21st century is roughly sketched, and the technical development trends in high-frequency and high-speed devices are briefly forecasted. Four examples of devices under development are reported: 76-GHz flip-chip MMIC's for car-radar systems, a cost-effective RF module for millimeter-wave wireless systems, a 10-Gbps demultiplexer for optical fiber communication systems, and a GaAs microwave signal processor for active phased-array systems. Considering as technological trends evolve further, this paper also introduces the software radio concept and the fusion of wireless and optical technologies for cost-effective wireless communication equipment and end-user services.

  • A High-Speed, Low-Power Phase Frequency Detector and Charge-Pump Circuits for High Frequency Phase-Locked Loops

    Won-Hyo LEE  Sung-Dae LEE  Jun-Dong CHO  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2514-2520

    In this paper, we introduce a high-speed and low-power Phase-Frequency Detector (PFD) that is designed using a modified TSPC (True Single-Phase Clock) positive edge triggered D flip-flop . The proposed PFD has a simple structure with using only 19 transistors. The operation range of this PFD is over 1.4 GHz without using additional prescaler circuits. Furthermore, the PFD has a dead zone less than 0.01ns in the phase characteristics and has low phase sensitivity errors. The phase and frequency error detection range is not limited as in the case of the pt-type and nc-type PFDs. Also, the PFD is independent of the duty cycle of input signals. Also, a new charge-pump circuit is presented that is based on a charge-amplifier. A stand-by current of the proposed charge-pump circuit enhances the speed of charge-pump and removes the charge sharing which causes a phase noise in the charge pump PLL. Furthermore, the effect of clock feedthrough is reduced by separating the output stage from up and down signal. The simulation results base on a third order PLL are presented to verify the lock in process with the proposed PFD and charge pump circuits. The proposed PFD and charge-pump circuits are designed using 0.8 µm CMOS technology with 5 V supply voltage.

  • Wave Propagation Phenomena of Phase States in Oscillators Coupled by Inductors as a Ladder

    Masayuki YAMAUCHI  Masahiro WADA  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E82-A No:11
      Page(s):
    2592-2598

    In this study, wave propagation phenomena of phase states are observed at van der Pol oscillators coupled by inductors as a ladder. For the case of 17 oscillators, interesting wave propagation phenomena of phase states are found. By using the relationship between phase states and oscillation frequencies, the mechanisms of the propagation and the reflection of wave are explained. Circuit experimental results agree well with computer calculated results qualitatively.

  • Current-Sensed SRAM Techniques for Megabit-Class Integration--Progress in Operating Frequency by Using Hidden Writing-Recovery Architecture--

    Nobutaro SHIBATA  

     
    PAPER-Integrated Electronics

      Vol:
    E82-C No:11
      Page(s):
    2056-2064

    A new data-I/O scheme with a hidden writing-recovery architecture has been developed for the megabit-class high operating frequency SRAMs. Read-out nodes in the memory cell are separated from bitline-connected writing nodes so as not to delay sensing initiation due to uncompleted bitline recovery. The data stored in a memory cell are read-out by sensing the differential current signal on a double-rail virtual-GND line along bitlines. Each pair of virtual-GND lines is imaginarily short-circuited by a sense amplifier, so that the read-out circuitry would have large immunity against virtual-GND-line noises. The critical noise level associated with data destruction is analyzed at various supply voltages. The virtual-GND-line-sensed memory cell with the squashed topology, the swing-suppression-type low-power writing circuitry, and the current-sense amplifier with extra negative feedback loops, --which are used in the data-I/O scheme are also mentioned. Assuming a sub array in megabit-class SRAMs, 4 K-words 6 -bits test chip was fabricated with a 0.5-µm CMOS process. The SRAM achieved 180-MHz operation at a typical 3.3-V, 25 condition. The power dissipation at the practical operating frequency of 133-MHz was 50-mW.

  • Timing Jitter Characteristics of RZ Pulse Nonlinear Transmission on Dispersion Managed Fiber Link

    Kazuho ANDO  Masanori HANAWA  Mikio TAKAHARA  

     
    PAPER-Communication Systems

      Vol:
    E82-A No:10
      Page(s):
    2081-2088

    One of the limitation factors on the achievable distance for long-haul nonlinear Return-to-Zero (RZ)-Gaussian pulse transmission on optical fiber links is timing jitter. Although it is well known that the dispersion management technique is very effective to reduce the timing jitter, comparisons among some dispersion management methods based on the timing jitter reduction have not been reported yet. In this paper, timing jitter reduction by some dispersion management methods in nonlinear RZ-Gaussian pulse transmission systems are discussed. Moreover, we will report that the amount of timing jitter at the receiver side drastically changes depending on the configuration of dispersion managed optical fiber transmission line.

  • A Context-Dependent Sequential Decision for Speaker Verification

    Hideki NODA  Katsuya HARADA  Eiji KAWAGUCHI  

     
    LETTER-Speech Processing and Acoustics

      Vol:
    E82-D No:10
      Page(s):
    1433-1436

    This paper presents an improved method of speaker verification using the sequential probability ratio test (SPRT), which can treat the correlation between successive feature vectors. The hidden Markov model with the mean field approximation enables us to consider the correlation in the SPRT, i. e. , using the mean field of previous state, probability computation can be carried out as if input samples were independent each other.

  • Spectral Coding of Speech LSF Parameters Using Karhunen-Loeve Transform

    Laszlo LOIS  Hai Le VU  

     
    PAPER-Source Coding/Image Processing

      Vol:
    E82-A No:10
      Page(s):
    2138-2146

    In this paper, the use of optimal Karhunen-Loeve (KL) transform for quantization of speech line spectrum frequency (LSF) coefficients is studied. Both scalar quantizer (SQ) and vector quantizer (VQ) schemes are developed to encode efficiently the transform parameters after operating one or two-dimensional KL transform. Furthermore, the SQ schemes are also combined with entropy coding by using Huffman variable length coding (VLC). The basic idea in developing these schemes is utilizing the strong correlation of LSF parameters to reduce the bit rate for a given level of fidelity. Since the use of global statistics for generating the coding scheme may not be appropriate, we propose several adaptive KL transform systems (AKL) to encode the LSF parameters. The performance of all systems for different bit rates is investigated and adequate comparisons are made. It is shown that the proposed KL transform coding systems introduce as good as or better performance for both SQ and VQ in the examined bit rates compared to other methods in the field of LSF coding.

  • Probability of Error for a Hybrid DS/SFH Spread-Spectrum System over a Nakagami Fading Channel in the Presence of Multiple Tone Jamming

    WooSub BYUN  SeongJoon BAEK  Koeng-Mo SUNG  

     
    LETTER-Radio Communication

      Vol:
    E82-B No:10
      Page(s):
    1699-1701

    In this letter, the bit error probability of a hybrid DS/SFH-SS (Direct-Sequence/Slow-Frequency-Hopped Spread-Spectrum) system is derived for a Nakagami fading channel in the presence of multiple tone jamming. At a low JSR (jamming-to-signal power ratio), a pure DS-SS system can achieve lower bit error probability than a hybrid DS/SFH-SS system. But at a high JSR, a hybrid DS/SFH-SS system is shown to be superior to a pure DS-SS system. Especially, the worst case performance of a hybrid DS/SFH-SS system is almost equal to that of a pure DS-SS system.

  • Enhanced Backscattering from Random Media with Multiple Suspensions

    Yasuyuki OKAMURA  Hiroyuki KAI  Sadahiko YAMAMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:10
      Page(s):
    1853-1856

    Experiment is reported of enhanced backscattering of light in binary and ternary suspensions of rutile and/or alumina particles. With a conventional CCD camera system for observing the phenomena, the angular line shape and the enhancement factor were agreed with the theoretically predicted curve and value. Observation of the angular distribution scattered at the backscattered direction supported the hypothesis proposed by Pine et al. , in which the transport mean free path of the polydisperse mixture can be expressed in terms of summing its reciprocal values weighted over the particle sizes.

  • Design of a Variable Rate Algorithm for the CS-ACELP Coder

    Woosung CHUNG  Sangwon KANG  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E82-D No:10
      Page(s):
    1364-1371

    In 1995, 8 kb/s CS-ACELP coder of G.729 is standardized by ITU-T SG15 and it has been reported that the speech quality of G.729 is better than or equal to that of 32 kb/s ADPCM (G.726). However G.729 is the fixed rate speech coder, and it does not consider the property of voice activity in mutual conversation. If we use the voice activity, we can reduce the average bit rate in half without any degradations of the speech quality. In this paper, we propose an efficient variable rate algorithm for G.729. The variable rate algorithm consists of two main subjects, the rate determination algorithm and the design of sub rate coders. For the robust VAD algorithm, we combine the energy-thresholding method, the phonetic segmentation method by integration of various feature parameters obtained through the analysis procedure, and the variable hangover period method. Through the analysis of noise features, the 1 kb/s sub rate coder is designed for coding the background noise signal. Also, we design the 4 kb/s sub rate coder for the unvoiced parts. The performance of the variable rate algorithm is evaluated by the comparison of speech quality and average bit rate with G.729. Subjective quality test is also done by MOS test. Conclusively, it is verified that the proposed variable rate CS-ACELP coder produces the same speech quality as G.729, at the average bit rate of 4.4 kb/s.

  • Methods for Adapting Case-Bases to Environments

    Hiroyoshi WATANABE  Kenzo OKUDA  Katsuhiro YAMAZAKI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E82-D No:10
      Page(s):
    1393-1400

    In the domains involving environmental changes, some knowledge and heuristics which were useful for solving problems in the previous environment often become unsuitable for problems in the new environment. This paper describes two approaches to solve such problems in the context of case-based reasoning systems. The first one is maintaining descriptions of applicable scopes of cases through generalization and specialization. The generalization is performed to expand problem descriptions, i. e. descriptions of applicable scopes of cases. On the other hand, the specialization is performed to narrow problem descriptions of cases which failed to be applied to given problems with the aim of dealing with environmental changes. The second approach is forgetting, that is deleting obsolete cases from the case-base. However, the domain-dependent knowledge is necessary for testing obsolescence of cases and that causes the problem of knowledge acquisition. We adopt the strategies used by conventional learning systems and extend them using the least domain-dependent knowledge. These two approaches for adapting the case-base to the environment are evaluated through simulations in the domain of electric power systems.

  • 10 Gbit/s Optical Soliton Transmission Experiment in a Comb-Like Dispersion Profiled Fiber Loop

    Hiroyuki TODA  Yoshihisa INADA  Yuji KODAMA  Akira HASEGAWA  

     
    LETTER-Optical Communication

      Vol:
    E82-B No:9
      Page(s):
    1541-1543

    We performed 10 Gbit/s optical soliton transmission experiment over 2,000 km with bit error rate of < 10-9 in a comb-like dispersion profiled fiber (CDPF) loop of 80 km amplifier spacing which corresponds to 1.8 times of dispersion distance. By reducing the average dispersion of the CDPF, error free distance of 3,000 km was obtained.

  • A Code-Division Multiplexing Technique for Efficient Data Transmission in VLSI Systems

    Yasushi YUMINAKA  Kazuhiko ITOH  Yoshisato SASAKI  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-Non-Binary Architectures

      Vol:
    E82-C No:9
      Page(s):
    1669-1677

    This paper proposes applications of a code-division multiplexing technique to VLSI systems free from interconnection problems. We employ a pseudo-random orthogonal m-sequence carrier as a multiplexable information carrier to achieve efficient data transmission. Using orthogonal property of m-sequences, we can multiplex several computational activities into a single circuit, and execute in parallel using multiplexed data transmission with reduced interconnection. Also, randomness of m-sequences offers the high tolerance to interference (jamming), and suppression of dynamic range of signals while maintaining a sufficient signal-to-noise ratio (SNR). We demonstrate application examples of multiplex computing circuits, neural networks, and spread-spectrum image processing to show the advantages.

  • A Synergetic Approach to Speculative Price Volatility

    Taisei KAIZOJI  

     
    PAPER

      Vol:
    E82-A No:9
      Page(s):
    1874-1882

    In this paper we propose a heterogeneous agents model that represents speculative dynamics by using the synergetic approach. We consider the markets for three securities (a stock, a bond, and a foreign currency). Each market consists of two typical types of investors: fundamentalists and bandwagon traders. We show the characteristic patterns of speculative prices (speculative bubbles and speculative chaos) which are generated by trading between the fundamentalists and bandwagon traders.

  • A Hybrid Speech Coder Based on CELP and Sinusoidal Coding

    Mohammad NAKHAI  Farokh MARVASTI  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E82-D No:8
      Page(s):
    1190-1199

    In this paper, we study a new hybrid speech coder which employs a modified version of the harmonic sinusoidal analysis to encode the periodic contents of speech waveform and to split the speech spectrum into two frequency regions of harmonic and random components. A reliable fundamental frequency is estimated for the harmonic region using both speech and its linear predictive (LP) residual spectrum. The peak envelope of speech spectrum is encoded in terms of the coefficients of an all-pole spectrum. A harmonic tracking algorithm appropriately interpolates the sinusoidal parameters to achieve a smooth transition between the parameter update points and to reconstruct an essential level of periodicity in the synthetic voiced speech. The random part of spectrum and unvoiced speech are coded using the conventional CELP algorithm. The individual components are then combined at the decoder to obtain the synthetic speech. The proposed hybrid coder which combines the powerful features of the sinusoidal and CELP coding algorithms yeilds a high quality synthetic speech at 4.05 kbps.

  • The Synthesis of Low-Peak Cross-Correlation Sequences Using Trigonometric Function Aliasing

    Takafumi HAYASHI  William L. MARTENS  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1402-1411

    This paper presents a new technique for the synthesis of sets of low-peak sequences exhibiting low peak cross correlation. The sequences also have flat power spectra and are suitable for many applications requiring such sets of uncorrelated pseudo-white-noise sources. This is a new application of the ta-sequence (trigonometric function aliasing sequence), which itself is a very new technique that uses the well-known "Reed-Solomon code" or "One coincident code" to generate these sets of low-peak-factor pseudo-white-noise exhibiting low peak cross correlation. The ta sequence method presented here provides the means for generating various sequences at the lengths required for such applications as system measurement (needing uncorrelated test signals), pseudo-noise synthesis (for spread spectrum communication), and audio signal processing for sound production (for enhancing spatial imagery in stereo signals synthesized from mono sources) and sound reproduction (for controlling unwanted interference effects in multiple-loudspeaker arrays).

  • A New General Distance Measure for Quantization of LSF and Its Transformed Coefficients

    Hai Le VU  Laszlo LOIS  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1493-1500

    This paper presents a new general distance measure that not only can be used in a vector quantization (VQ) of line spectrum frequency (LSF) parameters but also performs well in a LSF transformed domain. The new distance is based on the spectral sensitivity of LSFs and their transformed coefficients. In addition, a fix scaling vector is used to decrease the sensitivity of spectral error at higher frequencies. Experimental results have shown that the proposed distance measure leads to as good as or better performance of VQ compared to other methods in the field of LSF coding. The use of this distance as the weighting function of the LSF transformed parameters is also suggested.

  • Bandwidth and Transmission Distance Achieved by POF

    Yasuhiro KOIKE  Takaaki ISHIGURE  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-B No:8
      Page(s):
    1287-1295

    Recent status of the polymer optical fiber (POF) for high speed data communication and telecommunication is reviewed. The GI POF was proposed for the first time 20 years ago at Keio University, and several methodologies to fabricate GI POF have been currently proposed worldwide. In this paper, we both theoretically and experimentally verify that the most transparent GI POF can be obtained by the polymer-dopant system. The relation between the refractive index profile and the dispersion characteristics of the GI POF was quantitatively clarified. The refractive index profile of the GI POF obtained by the interfacial-gel polymerization process was controlled to enable to transmit the order of gigabit per second bit rate. Furthermore, the accurate approximation of the refractive index profile and consideration of mode dependent attenuation enabled to precisely predict the dispersion characteristics of the GI POF.

  • Comparison of Performance between AND and Majority Logic Type Nonlinear Feedforward Logic Pseudonoise Sequence Generators

    Kari H. A. KARKKAINEN  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E82-A No:8
      Page(s):
    1641-1647

    Two classes of nonlinear feedforward logic (NLFFL) pseudonoise (PN) code generators based on the use of AND and majority logic (ML) gates are compared. Cross-correlation and code-division multiple-access (CDMA) properties of properly designed NLFFL sequences are found to be comparable with the properties of well-known linear PN codes. It is determined that code design employing ML gates with an odd number of inputs is easier compared with designing with AND gates. This is especially true when the degree of nonlinearity is large, since the nonbalance problem, e. g. , at the output of an AND gate, can be avoided. ML type sequences are less vulnerable to correlation attack and jamming by the m-sequence of an NLFFL generator

1941-1960hit(2504hit)