The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPEC(1274hit)

1221-1240hit(1274hit)

  • Implementation of an Industrial R/C System Using a Hybrid DS/FH Spread Spectrum Technique

    Atsushi HOSHIKUKI  Michio YAMAMOTO  Satoru ISHII  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    984-989

    Industrial radio control systems require a high degree of safety and reliability even in operating environments where harsh interference conditions exist. In order to implement Spread Spectrum (SS) modulation techniques in industrial radio control systems, a hybrid Direct Sequence/Frequency Hopping (DS/FH) system with high speed synchronization capability was designed, implemented and evaluated. In this system, a digital matched filter was utilized for despreading the DS signal. By manipulating the despread signal and sensing the correlation peak, the frequency hopping circuit can operate without a special synchronizing circuit. The focus of this report is on an engineering sample created for the 900MHz band available as an ISM band in the U.S. In this sample, error correction code was integrated with the hybrid DS/FH which gives the system excellent narrow-band interference rejection properties and Code Division Multiple Access (CDMA) capabilities.

  • Field Tests of a Spread Spectrum Land Mobile Satellite Communication System

    Tetsushi IKEGAMI  Shinichi TAIRA  Yoshiya ARAKAKI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    996-1001

    The bit error performance of a Direct Sequence Spread Spectrum Communication system in actual land mobile satellite channel is evaluated with experiments. Field test results with the ETS-V satellite in urban and suburban environments at L-band frequency show that this land mobile satellite channel of 3MHz bandwidth can be seen as a non-frequency selective Rician fading channel as well as shadowing channel. The bit error performance can be estimated from signal power measurement as in the case of narrow band modulation signals.

  • A SAW-Based Spread Spectrum Wireless LAN System

    Kazuyuki TAKEHARA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    990-995

    The spread spectrum system (abbreviated as SS system) is known to be an excellent communication system which resists jamming. Recently, its application to a simplified wireless communication system has been considered to be suited for consumer communication. In Japan, SS wireless LAN system has got the approval on 2.4GHz ISM band already. A compact SS transceiver for the SS wireless LAN is realized, whose data ratio is 230kbps. The SS transceiver is based on a direct sequence for the modulation, and the demodulation is carried out by a specially developed SAW device. In the first part of this paper, the technical conditions of the SS wireless LAN are mentioned. Then the SAW device and the principle of the demodulation are discussed. Finally, the configuration of the SS transceiver and the protocol of the SS wireless LAN are presented.

  • Synchronous CDMA for Optical Subscriber Systems Using Block-Interleave and Redundancy Code Sequences

    Tetsuya ONODA  Noriki MIKI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    969-983

    A new type of synchronous code division multiple access (S/CDMA) scheme for optical subscriber systems is reported. Passive channel multiplexing is promising for optical subscriber systems because it realizes high system performance at low cost. Unfortunately, passive channel multiplexing suffers from phase differences among the upstream channels, and these differences prevent the usage of traditional synchronous CDMA techniques that reduce cross channel interference. This paper proposes the new technique of block-interleaving & redundancy code sequences to overcome this problem. This combination realizes S/CDMA even in the presence of phase differences and eliminates cross channel interference completely. Therefore, in an optical subscriber system using the new type S/CDMA, the bit error rate performance is independent of phase difference levels and the number of multiplexed channels.

  • Rejection of Narrow-Band Interference in a Delay-Lock Loop Using Prediction Error Filters

    Hiroji KUSAKA  Toshihisa NAKAI  Masahiro KIMURA  Tetsuya NIINO  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    955-960

    A narrowband interference in direct sequence spread spectrum communication systems also affects the characteristics of a delay lock loop. In this paper, the delay errors of a baseband delay lock loop (DLL) in the presence of the interference which consists of a narrowband Gaussian noise and several tones are examined, and when a filter is used to reject the interference, the characteristics of the DLL are analyzed using the Fourier method. Furthermore, from the calculation results of the delay error in case where a prediction error filter with two-sided taps is used as the rejection filter, it is shown that the filter is necessary to keep the DLL in the lock-on state.

  • Concatenated Coding Alternatives for Frequency-Hop Packet Radio

    Colin D. FRANK  Michael B. PURSLEY  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    863-873

    Concatenated coding techniques are applied to slow frequency-hop packet radio communications for channels with partial-band interference. Binary orthogonal signaling (e.g., binary FSK) is employed with noncoherent demodulation. The outer codes are Reed-Solomon codes and the inner codes are convolutional codes. Two concatenated coding schemes are compared. The first employs an interleaver between the outer Reed-Solomon code and the inner convolutional code. The second scheme employs an additional interleaver following the convolutional code. Comparisons are made between the performance of these concatenated coding schemes and the performance of Reed-Solomon codes alone.

  • Spread Spectrum Pulse Position Modulation--A Simple Approach for Shannon's Limit--

    Isao OKAZAKI  Takaaki HASEGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    929-940

    In this paper, we propose a spread spectrum pulse position modulation (SS-PPM) system, and describe its basic performances. In direct sequence spread spectrum (DS/SS) systems, pseudo-noise (PN) matched filters are often used as information demodulation devices. In the PN matched filter demodulation systems, for simple structure and low cost of each receiver, it is desired that each demodulator uses only one PN matched filter, and that signals transmitted from each transmitter are binary. In such systems, on-off keying (SS-OOK), binary-phase-shift keying (SS-BPSK) and differential phase-shift keying (SS-DPSK) have been conventionally used. As one of such systems, we propose the SS-PPM system; the SS-PPM system is divided into the following two systems: 1) the SS-PPM system without sequence inversion keying (SIK) of the spreading code (Without SIK for short); 2) the SS-PPM system with SIK of the spreading code (With SIK for short). As a result, we show that under the same bandwidth and the same code length, the data transmission rate of the SS-PPM system is superior to that of the other conventional SS systems, and that under the same band-width, the same code length and the same data transmission rate, the SS-PPM system is superior to the other conventional SS systems on the following points: 1) Single channel bit error rate (BER) (BER characteristics of the SS-PPM system improve with increasing the number of chip slots of the SS-PPM system, and as the number of chip slots increases, it approaches Shannon's limit); 2) Asynchronous CDMA BER; 3) Frequency utilization efficiency. In addition, we also show that With SIK is superior to Without SIK on these points.

  • The Derivation and Use of Side Information in Frequency-Hop Spread Spectrum Communications

    Michael B. PURSLEY  

     
    INVITED PAPER

      Vol:
    E76-B No:8
      Page(s):
    814-824

    The effectiveness of error-control coding in a frequency-hop radio system can be increased greatly by the use of side information that is developed in the radio receiver. The transmission of test symbols provides a simple method for the derivation of side information in a slow-frequency-hop receiver. Requirements on the reliability of the side information are presented, and their implications in determining the necessary number of test symbols are described. Other methods for developing side information are reviewed briefly, and applications of side information to routing protocols for frequency-hop packet radio networks are discussed.

  • Multihopping and Decoding of Error-Correcting Code for MFSK/FH-SSMA Systems

    Tetsuo MABUCHI  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    874-885

    This paper investigates a multihopping scheme for MFSK (Multilevel Frequency Shift Keying) /FH-SSMA (Frequency Hopping-Spread Spectrum Multiple Access) system. Moreover, we propose and investigate a modified decoding scheme for the coded MFSK/FH-SSMA system. In this multi-hopped MFSK/FH-SSMA system, several hopping frequencies per chip are assigned and transmitted in parallel in order to improve its frequency diversity capability for a fading channel. We theoretically analyze the performance of the multihopped MFSK/FH-SSMA system in a Rayleigh fading channel. Moreover, in the coded MFSK/FH-SSMA system, we propose a modified scheme of the error and erasure decoding of an error-correcting code. The modified decoding scheme utilizes the information of rows having the largest number of entries in the decoded time-frequency matrix. Their BER (Bit Error Rate) performance is evaluated by theoretical analysis in order to show the improvement in user capacity.

  • Survey of Linear Block Estimation Algorithms for the Detection of Spread Spectrum Signals Transmitted over Frequency Selective Channels

    Paul W. BAIER  Tobias FELHAUER  Anja KLEIN  Aarne MÄMMELÄ  

     
    INVITED PAPER

      Vol:
    E76-B No:8
      Page(s):
    825-834

    The well known optimum approach to detect spread spectrum signals transmitted in bursts over frequency selective radio channels is matched filtering, which performs despreading, and subsequent Viterbi equalization (VE) to cope with intersymbol interference (ISI). With respect to complexity, VE is feasible only if data modulation schemes with a few symbol levels as e.g. 2PSK are used and if the delay spread of the channel is not too large. The paper gives a survey of suboptimum data detectors based on linear block estimation. Such data detectors are less expensive than VE especially in the case of multilevel data modulation schemes as 4PSK or 16QAM. Special emphasis is laid on data detectors based on Gauss-Markoff estimation because these detectors combine the advantages of unbiasedness and minimum variance of the estimate. In computer simulations, the Gauss-Markoff estimation algorithm is applied to spread spectrum burst transmission over radio channels specified by COST 207. It is shown that the SNR degradation which is a measure of the suboptimality of the detector does not exceed a few dB, and that even moderate spectrum spreading considerably reduces the detrimental effect of channel frequency selectivity.

  • Capacity Analysis of a Cellular Direct Sequence Code Division Multiple Access System with Imperfect Power Control

    Ramjee PRASAD  Michel G. JANSEN  Adriaan KEGEL  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    894-905

    The capacity of a cellular direct sequence code division multiple access system is investigated in situations with and without power control for both the reverse link (from mobile to base station) and the forward link (from base station to mobile). The capacity is defined as the number of simultaneous users per cell with a prespecified performance. A theoretical analysis of the effect of imperfect power control on the reverse link capacity is presented using an analytical model. To investigate the reverse link capacity without any form of power control, a general spatial user distribution is developed which is very suitable for analytical study of any multiple access system with the near-far effect problem. The performance of the reverse link of a CDMA system is also evaluated considering the users located in surrounding cells. Finally, the forward link capacity is studied considering multiple cells. Two possible forward power control schemes, namely carrier-to-interference ratio driven and distance driven systems, are discussed.

  • Possibility of Phonon-Assistance on Electronic Transport and the Cooper Pairing in Oxide Superconductors

    Ryozo AOKI  Hironaru MURAKAMI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1310-1318

    The Cooper pairing interaction in high Tc oxide superconductor is discussed in terms of an empirical expression; TcDexp[1/g], gcωo which was derived in our previous investigation. The dual character of this expression consisting of the phonon Debye temperature D and electronic excitation ωo in the mid-infrared region can be interpreted on the basis of the phonon-assisted mechanism on carrier conduction and the electronic excitation. A tunneling spectrum here presented shows certain evidence of the phonon contribution. The characteristics of the long range superconductive proximity phenomena recently reported are also may be interpreted by this mechanism.

  • A New Photometric Method Using 3 Point Light Sources

    Changsuk CHO  Haruyuki MINAMITANI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    898-904

    This paper presents a new idea of photometric stereo method which uses 3 point light sources as illumination source. Its intention is to extract the 3-D information of gastric surface. The merit of this method is that it is applicable to the textured and/or specular surfaces, moreover whose environment is too narrow, like gastric surface. The verification of the proposed method was achieved by the theoretical proof and experiment.

  • Performance of a Direct Sequence Spread Spectrum Multiple Access System Utilizing Unequal Carrier Frequencies

    Elvino S. SOUSA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    906-912

    In this paper we determine the performance of a direct sequence spread spectrum multiple access system where the users utilize different carrier frequencies. This scheme is applicable to a system, such as an indoor wireless communication system utilizing very high frequencies, where the available bandwidth is so large that it is not feasible to spread the signal over the whole band. The multi-user interference is modeled as a compound Gaussian random variable and expressions are found for the variance of the interference as a function of relative phase and frequency parameters. In addition to different carrier frequencies the analysis also accounts for offsets in the chip clock frequencies, general chip pulse shaping function, and different received signal powers. We give results for the error probability in a multiple access system utilizing BPSK, QPSK, and OQPSK modulation.

  • Adaptive RAKE Receiver for Mobile Communications

    Yukitoshi SANADA  Akihiro KAJIWARA  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1002-1007

    In this paper, we propose an adaptive RAKE receiver, which does not need to send the sounding signals and can track the fluctuations caused by fading. The channel estimation can be done by using a least squares method of the first and second equations suppressing additive noise and tracking the channel fluctuations. It is confirmed by computer simulations that the result has good agreement with theory and the performance is almost same as that of the conventional RAKE with the sounding signals.

  • Asynchronous Multiple Access Performances of Frequency-Time-Hopped Multi-Level Frequency-Time

    Kohji ITOH  Makoto ITAMI  Kozo KOMIYA  Yasuo SOWA  Keiji YAMADA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    913-920

    Assuming application to the mobile multiple-access communication, chip-asynchronous mobile-to-base performances of FH/FTH (Frequency-Time-Hopped)-MFTSK (Multi-level Frequency-Time Shift Keying) systems are investigated. Analytical expressions are obtained for the probabilities of false detection and missed detection of signal elements, assuming independent and asynchronous arrival of each of the signal elements with Rayleigh fading and optional AWG noise. Using the result or by simulation and employing dual-k coding, parameter optimization was carried out to obtain the maximum spectrum efficiency. The results of the noisy case analysis and simulation show high noise-robustness of the FTH systems. For a given value of information transmission rate the optimized FTH-MFTSK gives an effectively constant spectrum efficiency for a wide range of the number Kf of frequency chips. As a result, FTH-MFTSK well outperforms FTH-MFSK at any, especially small value of Kf. Relative to the overall optimum FH-MFSK, FTH-MFSK systems show typically around 20% of degradation in spectrum efficiency even with one-eighth of Kf. Compared with FH-MFSK, accordingly, FTH-MFTSK systems allow the designer to reduce, without any degradation in multiple-access performances, the number of frequency chips to the minimum value tolerated by the frequency selective fading characteristics and the time chip duration requirement imposed by the signal-to-noise ratio margin and the transmitter peak power rating.

  • Pre-RAKE Diversity Combination for Direct Sequence Spread Spectrum Mobile Communications Systems

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1008-1015

    A new method of multipath diversity combination is proposed for Direct Sequence Spread Spectrum (DS-SS) mobile communications. In this method, the transmitted signal from the base staion is the sum of a number of the same spread signal, each one delayed and scaled according to the delay and the strength of the multipaths of the transmission channel. As a result the received signal at the mobile unit will already be a Rake combination of the multipath signals. This new method is called Pre-Rake diversity combination because the Rake diversity combination process is performed before transmission By this method the size and complexity of the mobile unit can be minimized, and the unit is made as simple as a non-combining single path receiver. A theoretical examination of the Signal to Noise Ratio (SNR) and the Bit Error Rate (BER) results for the traditional Rake and the Pre-Rake combiners as well as computer simulations show that the performance of the Pre-Rake combiner is equivalent to that of the Rake combiner.

  • Speculative Execution and Reducing Branch Penalty on a Superscalar Processor

    Hideki ANDO  Chikako NAKANISHI  Hirohisa MACHIDA  Tetsuya HARA  Masao NAKAYA  

     
    PAPER-Improved Binary Digital Architectures

      Vol:
    E76-C No:7
      Page(s):
    1080-1093

    Superscalar processors improve performance by exploiting instruction-level parallelism (ILP). ILP in a basic block is, however, not sufficient on non-numerical applications for gaining substantial speedup. Instructions across branches are required to be executed in parallel to dramatically improve performance. That is, speculative execution is strongly required. Boosting is a general solution to achieving speculative execution. Boosting labels an instruction to be speculatively executed, and the hardware handles side-effects. This paper describes the efficient implementation of boosting in terms of cost/performance trade-offs. Our policy in implementation is beneficial in code scheduling heuristics, penalties imposed by code duplication to maintain program semantics, and area cost. This paper also describes a branch scheme which minimizes branch penalty. Branch delay causes crucial penalties on the performance of superscalar processors since multiple delay slots exist even in a single delay cycle. Our scheme is the fetching of both sequential and target instructions, and either of them is selected on a branch. No delay cycle can be imposed. This scheme is realized by a combination of static code movement and hardware support. As a result, we reduce branch penalty with small cost. Simulation results show that our ideas are highly effective in improving the performance of a superscalar processor.

  • Generalized Marching Test for Detecting Pattern Sensitive Faults in RAMs

    Masahiro HASHIMOTO  Eiji FUJIWARA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    809-816

    Since semiconductor memory chip has been growing rapidly in its capacity, memory testing has become a crucial problem in RAMs. This paper proposes a new RAM test algorithm, called generalized marching test (GMT), which detects static and dynamic pattern sensitive faults (PSF) in RAM chips. The memory array with N cells is partitioned into B sets in which every two cells has a cell-distance of at least d. The proposed GMT performs the ordinary marching test in each set and finally detects PSF having cell-distance d. By changing the number of partitions B, the GMT includes the ordinary marching test for B1 and the walking test for BN. This paper demonstrates the practical GMT with B2, capable of detecting PSF, as well as other faults, such as cell stuck-at faults, coupling faults, and decoder faults with a short testing time.

  • On a Numerical Solution for the Near-Field of Microstrip Antennas

    Yasufumi SASAKI  Masanobu KOMINAMI  Shinnosuke SAWA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    759-761

    Numerical solutions for the near-field of microstrip antennas are presented. The field distribution is calculated by taking the inverse Fourier transform involving the current distribution with the help of the spectral-domain moment method. A new technique to save the computation time is devised, and the field pattern of the circularly polarized antenna is illustrated.

1221-1240hit(1274hit)