The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SVM(62hit)

1-20hit(62hit)

  • Joint Selfattention-SVM DDoS Attack Detection and Defense Mechanism Based on Self-Attention Mechanism and SVM Classification for SDN Networks Open Access

    Wanying MAN  Guiqin YANG  Shurui FENG  

     
    PAPER-Human Communications

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:6
      Page(s):
    881-889

    Software Defined Networking (SDN), a new network architecture, allows for centralized network management by separating the control plane from the forwarding plane. Because forwarding and control is separated, distributed denial of service (DDoS) assaults provide a greater threat to SDN networks. To address the problem, this paper uses a joint high-precision attack detection combining self-attentive mechanism and support vector machine: a trigger mechanism deployed at both control and data layers is proposed to trigger the initial detection of DDoS attacks; the data in the network under attack is screened in detail using a combination of self-attentive mechanism and support vector machine; the control plane is proposed to initiate attack defense using the OpenFlow protocol features to issue flow tables for accurate classification results. The experimental results show that the trigger mechanism can react to the attack in time with less than 20% load, and the accurate detection mechanism is better than the existing inspection and testing methods, with a precision rate of 98.95% and a false alarm rate of only 1.04%. At the same time, the defense strategy can achieve timely recovery of network characteristics.

  • Home Activity Recognition by Sounds of Daily Life Using Improved Feature Extraction Method

    João Filipe PAPEL  Tatsuji MUNAKA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-D No:4
      Page(s):
    450-458

    In recent years, with the aging of society, many kinds of research have been actively conducted to recognize human activity in a home to watch over the elderly. Multiple sensors for activity recognition are used. However, we need to consider privacy when using these sensors. One of the candidates of the sensors that keep privacy is a sound sensor. MFCC (Mel-Frequency Cepstral Coefficient) is widely used as a feature extraction algorithm for voice recognition. However, it is not suitable to apply conventional MFCC to activity recognition by sounds of daily life. We denote “sounds of daily life” as “life sounds” simply in this paper. The reason is that conventional MFCC does not extract well several features of life sounds that appear at high frequencies. This paper proposes the improved MFCC and reports the evaluation results of activity recognition by machine learning SVM (Support Vector Machine) using features extracted by improved MFCC.

  • A Learning-Based Service Function Chain Early Fault Diagnosis Mechanism Based on In-Band Network Telemetry

    Meiming FU  Qingyang LIU  Jiayi LIU  Xiang WANG  Hongyan YANG  

     
    PAPER-Information Network

      Pubricized:
    2021/10/27
      Vol:
    E105-D No:2
      Page(s):
    344-354

    Network virtualization has become a promising paradigm for supporting diverse vertical services in Software Defined Networks (SDNs). Each vertical service is carried by a virtual network (VN), which normally has a chaining structure. In this way, a Service Function Chain (SFC) is composed by an ordered set of virtual network functions (VNFs) to provide tailored network services. Such new programmable flexibilities for future networks also bring new network management challenges: how to collect and analyze network measurement data, and further predict and diagnose the performance of SFCs? This is a fundamental problem for the management of SFCs, because the VNFs could be migrated in case of SFC performance degradation to avoid Service Level Agreement (SLA) violation. Despite the importance of the problem, SFC performance analysis has not attracted much research attention in the literature. In this current paper, enabled by a novel detailed network debugging technology, In-band Network Telemetry (INT), we propose a learning based framework for early SFC fault prediction and diagnosis. Based on the SFC traffic flow measurement data provided by INT, the framework firstly extracts SFC performance features. Then, Long Short-Term Memory (LSTM) networks are utilized to predict the upcoming values for these features in the next time slot. Finally, Support Vector Machine (SVM) is utilized as network fault classifier to predict possible SFC faults. We also discuss the practical utilization relevance of the proposed framework, and conduct a set of network emulations to validate the performance of the proposed framework.

  • Feasibility Study for Computer-Aided Diagnosis System with Navigation Function of Clear Region for Real-Time Endoscopic Video Image on Customizable Embedded DSP Cores

    Masayuki ODAGAWA  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    LETTER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/08
      Vol:
    E105-A No:1
      Page(s):
    58-62

    This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.

  • Classification with CNN features and SVM on Embedded DSP Core for Colorectal Magnified NBI Endoscopic Video Image

    Masayuki ODAGAWA  Takumi OKAMOTO  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/21
      Vol:
    E105-A No:1
      Page(s):
    25-34

    In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.

  • Frank-Wolfe Algorithm for Learning SVM-Type Multi-Category Classifiers

    Kenya TAJIMA  Yoshihiro HIROHASHI  Esmeraldo ZARA  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/11
      Vol:
    E104-D No:11
      Page(s):
    1923-1929

    The multi-category support vector machine (MC-SVM) is one of the most popular machine learning algorithms. There are numerous MC-SVM variants, although different optimization algorithms were developed for diverse learning machines. In this study, we developed a new optimization algorithm that can be applied to several MC-SVM variants. The algorithm is based on the Frank-Wolfe framework that requires two subproblems, direction-finding and line search, in each iteration. The contribution of this study is the discovery that both subproblems have a closed form solution if the Frank-Wolfe framework is applied to the dual problem. Additionally, the closed form solutions on both the direction-finding and line search exist even for the Moreau envelopes of the loss functions. We used several large datasets to demonstrate that the proposed optimization algorithm rapidly converges and thereby improves the pattern recognition performance.

  • Corrected Stochastic Dual Coordinate Ascent for Top-k SVM

    Yoshihiro HIROHASHI  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:11
      Page(s):
    2323-2331

    Currently, the top-k error ratio is one of the primary methods to measure the accuracy of multi-category classification. Top-k multiclass SVM was designed to minimize the empirical risk based on the top-k error ratio. Two SDCA-based algorithms exist for learning the top-k SVM, both of which have several desirable properties for achieving optimization. However, both algorithms suffer from a serious disadvantage, that is, they cannot attain the optimal convergence in most cases owing to their theoretical imperfections. As demonstrated through numerical simulations, if the modified SDCA algorithm is employed, optimal convergence is always achieved, in contrast to the failure of the two existing SDCA-based algorithms. Finally, our analytical results are presented to clarify the significance of these existing algorithms.

  • Machine Learning-Based Approach for Depression Detection in Twitter Using Content and Activity Features

    Hatoon S. ALSAGRI  Mourad YKHLEF  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2020/04/24
      Vol:
    E103-D No:8
      Page(s):
    1825-1832

    Social media channels, such as Facebook, Twitter, and Instagram, have altered our world forever. People are now increasingly connected than ever and reveal a sort of digital persona. Although social media certainly has several remarkable features, the demerits are undeniable as well. Recent studies have indicated a correlation between high usage of social media sites and increased depression. The present study aims to exploit machine learning techniques for detecting a probable depressed Twitter user based on both, his/her network behavior and tweets. For this purpose, we trained and tested classifiers to distinguish whether a user is depressed or not using features extracted from his/her activities in the network and tweets. The results showed that the more features are used, the higher are the accuracy and F-measure scores in detecting depressed users. This method is a data-driven, predictive approach for early detection of depression or other mental illnesses. This study's main contribution is the exploration part of the features and its impact on detecting the depression level.

  • Ridge-Adding Homotopy Approach for l1-norm Minimization Problems

    Haoran LI  Binyu WANG  Jisheng DAI  Tianhong PAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/10
      Vol:
    E103-D No:6
      Page(s):
    1380-1387

    Homotopy algorithm provides a very powerful approach to select the best regularization term for the l1-norm minimization problem, but it is lack of provision for handling singularities. The singularity problem might be frequently encountered in practical implementations if the measurement matrix contains duplicate columns, approximate columns or columns with linear dependent in kernel space. The existing method for handling Homotopy singularities introduces a high-dimensional random ridge term into the measurement matrix, which has at least two shortcomings: 1) it is very difficult to choose a proper ridge term that applies to several different measurement matrices; and 2) the high-dimensional ridge term may accumulatively degrade the recovery performance for large-scale applications. To get around these shortcomings, a modified ridge-adding method is proposed to deal with the singularity problem, which introduces a low-dimensional random ridge vector into the l1-norm minimization problem directly. Our method provides a much simpler implementation, and it can alleviate the degradation caused by the ridge term because the dimension of ridge term in the proposed method is much smaller than the original one. Moreover, the proposed method can be further extended to handle the SVMpath initialization singularities. Theoretical analysis and experimental results validate the performance of the proposed method.

  • Anomaly Detection of Folding Operations for Origami Instruction with Single Camera

    Hiroshi SHIMANUKI  Toyohide WATANABE  Koichi ASAKURA  Hideki SATO  Taketoshi USHIAMA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1088-1098

    When people learn a handicraft with instructional contents such as books, videos, and web pages, many of them often give up halfway because the contents do not always assure how to make it. This study aims to provide origami learners, especially beginners, with feedbacks on their folding operations. An approach for recognizing the state of the learner by using a single top-view camera, and pointing out the mistakes made during the origami folding operation is proposed. First, an instruction model that stores easy-to-follow folding operations is defined. Second, a method for recognizing the state of the learner's origami paper sheet is proposed. Third, a method for detecting mistakes made by the learner by means of anomaly detection using a one-class support vector machine (one-class SVM) classifier (using the folding progress and the difference between the learner's origami shape and the correct shape) is proposed. Because noises exist in the camera images due to shadows and occlusions caused by the learner's hands, the shapes of the origami sheet are not always extracted accurately. To train the one-class SVM classifier with high accuracy, a data cleansing method that automatically sifts out video frames with noises is proposed. Moreover, using the statistics of features extracted from the frames in a sliding window makes it possible to reduce the influence by the noises. The proposed method was experimentally demonstrated to be sufficiently accurate and robust against noises, and its false alarm rate (false positive rate) can be reduced to zero. Requiring only a single camera and common origami paper, the proposed method makes it possible to monitor mistakes made by origami learners and support their self-learning.

  • High Performance Application Specific Stream Architecture for Hardware Acceleration of HOG-SVM on FPGA

    Piyumal RANAWAKA  Mongkol EKPANYAPONG  Adriano TAVARES  Mathew DAILEY  Krit ATHIKULWONGSE  Vitor SILVA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1792-1803

    Conventional sequential processing on software with a general purpose CPU has become significantly insufficient for certain heavy computations due to the high demand of processing power to deliver adequate throughput and performance. Due to many reasons a high degree of interest could be noted for high performance real time video processing on embedded systems. However, embedded processing platforms with limited performance could least cater the processing demand of several such intensive computations in computer vision domain. Therefore, hardware acceleration could be noted as an ideal solution where process intensive computations could be accelerated using application specific hardware integrated with a general purpose CPU. In this research we have focused on building a parallelized high performance application specific architecture for such a hardware accelerator for HOG-SVM computation implemented on Zynq 7000 FPGA. Histogram of Oriented Gradients (HOG) technique combined with a Support Vector Machine (SVM) based classifier is versatile and extremely popular in computer vision domain in contrast to high demand for processing power. Due to the popularity and versatility, various previous research have attempted on obtaining adequate throughput on HOG-SVM. This research with a high throughput of 240FPS on single scale on VGA frames of size 640x480 out performs the best case performance on a single scale of previous research by approximately a factor of 3-4. Further it's an approximately 15x speed up over the GPU accelerated software version with the same accuracy. This research has explored the possibility of using a novel architecture based on deep pipelining, parallel processing and BRAM structures for achieving high performance on the HOG-SVM computation. Further the above developed (video processing unit) VPU which acts as a hardware accelerator will be integrated as a co-processing peripheral to a host CPU using a novel custom accelerator structure with on chip buses in a System-On-Chip (SoC) fashion. This could be used to offload the heavy video stream processing redundant computations to the VPU whereas the processing power of the CPU could be preserved for running light weight applications. This research mainly focuses on the architectural techniques used to achieve higher performance on the hardware accelerator and on the novel accelerator structure used to integrate the accelerator with the host CPU.

  • Efficient Reformulation of 1-Norm Ranking SVM

    Daiki SUEHIRO  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/12/04
      Vol:
    E101-D No:3
      Page(s):
    719-729

    Finding linear functions that maximize AUC scores is important in ranking research. A typical approach to the ranking problem is to reduce it to a binary classification problem over a new instance space, consisting of all pairs of positive and negative instances. Specifically, this approach is formulated as hard or soft margin optimization problems over pn pairs of p positive and n negative instances. Solving the optimization problems directly is impractical since we have to deal with a sample of size pn, which is quadratically larger than the original sample size p+n. In this paper, we reformulate the ranking problem as variants of hard and soft margin optimization problems over p+n instances. The resulting classifiers of our methods are guaranteed to have a certain amount of AUC scores.

  • Drift-Free Tracking Surveillance Based on Online Latent Structured SVM and Kalman Filter Modules

    Yung-Yao CHEN  Yi-Cheng ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/14
      Vol:
    E101-D No:2
      Page(s):
    491-503

    Tracking-by-detection methods consider tracking task as a continuous detection problem applied over video frames. Modern tracking-by-detection trackers have online learning ability; the update stage is essential because it determines how to modify the classifier inherent in a tracker. However, most trackers search for the target within a fixed region centered at the previous object position; thus, they lack spatiotemporal consistency. This becomes a problem when the tracker detects an incorrect object during short-term occlusion. In addition, the scale of the bounding box that contains the target object is usually assumed not to change. This assumption is unrealistic for long-term tracking, where the scale of the target varies as the distance between the target and the camera changes. The accumulation of errors resulting from these shortcomings results in the drift problem, i.e. drifting away from the target object. To resolve this problem, we present a drift-free, online learning-based tracking-by-detection method using a single static camera. We improve the latent structured support vector machine (SVM) tracker by designing a more robust tracker update step by incorporating two Kalman filter modules: the first is used to predict an adaptive search region in consideration of the object motion; the second is used to adjust the scale of the bounding box by accounting for the background model. We propose a hierarchical search strategy that combines Bhattacharyya coefficient similarity analysis and Kalman predictors. This strategy facilitates overcoming occlusion and increases tracking efficiency. We evaluate this work using publicly available videos thoroughly. Experimental results show that the proposed method outperforms the state-of-the-art trackers.

  • Mutual Kernel Matrix Completion

    Rachelle RIVERO  Richard LEMENCE  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/05/17
      Vol:
    E100-D No:8
      Page(s):
    1844-1851

    With the huge influx of various data nowadays, extracting knowledge from them has become an interesting but tedious task among data scientists, particularly when the data come in heterogeneous form and have missing information. Many data completion techniques had been introduced, especially in the advent of kernel methods — a way in which one can represent heterogeneous data sets into a single form: as kernel matrices. However, among the many data completion techniques available in the literature, studies about mutually completing several incomplete kernel matrices have not been given much attention yet. In this paper, we present a new method, called Mutual Kernel Matrix Completion (MKMC) algorithm, that tackles this problem of mutually inferring the missing entries of multiple kernel matrices by combining the notions of data fusion and kernel matrix completion, applied on biological data sets to be used for classification task. We first introduced an objective function that will be minimized by exploiting the EM algorithm, which in turn results to an estimate of the missing entries of the kernel matrices involved. The completed kernel matrices are then combined to produce a model matrix that can be used to further improve the obtained estimates. An interesting result of our study is that the E-step and the M-step are given in closed form, which makes our algorithm efficient in terms of time and memory. After completion, the (completed) kernel matrices are then used to train an SVM classifier to test how well the relationships among the entries are preserved. Our empirical results show that the proposed algorithm bested the traditional completion techniques in preserving the relationships among the data points, and in accurately recovering the missing kernel matrix entries. By far, MKMC offers a promising solution to the problem of mutual estimation of a number of relevant incomplete kernel matrices.

  • Feature Selection Based on Modified Bat Algorithm

    Bin YANG  Yuliang LU  Kailong ZHU  Guozheng YANG  Jingwei LIU  Haibo YIN  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/05/01
      Vol:
    E100-D No:8
      Page(s):
    1860-1869

    The rapid development of information techniques has lead to more and more high-dimensional datasets, making classification more difficult. However, not all of the features are useful for classification, and some of these features may even cause low classification accuracy. Feature selection is a useful technique, which aims to reduce the dimensionality of datasets, for solving classification problems. In this paper, we propose a modified bat algorithm (BA) for feature selection, called MBAFS, using a SVM. Some mechanisms are designed for avoiding the premature convergence. On the one hand, in order to maintain the diversity of bats, they are guided by the combination of a random bat and the global best bat. On the other hand, to enhance the ability of escaping from local optimization, MBAFS employs one mutation mechanism while the algorithm trapped into local optima. Furthermore, the performance of MBAFS was tested on twelve benchmark datasets, and was compared with other BA based algorithms and some well-known BPSO based algorithms. Experimental results indicated that the proposed algorithm outperforms than other methods. Also, the comparison details showed that MBAFS is competitive in terms of computational time.

  • Multi-View 3D CG Image Quality Assessment for Contrast Enhancement Based on S-CIELAB Color Space

    Norifumi KAWABATA  Masaru MIYAO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/03/28
      Vol:
    E100-D No:7
      Page(s):
    1448-1462

    Previously, it is not obvious to what extent was accepted for the assessors when we see the 3D image (including multi-view 3D) which the luminance change may affect the stereoscopic effect and assessment generally. We think that we can conduct a general evaluation, along with a subjective evaluation, of the luminance component using both the S-CIELAB color space and CIEDE2000. In this study, first, we performed three types of subjective evaluation experiments for contrast enhancement in an image by using the eight viewpoints parallax barrier method. Next, we analyzed the results statistically by using a support vector machine (SVM). Further, we objectively evaluated the luminance value measurement by using CIEDE2000 in the S-CIELAB color space. Then, we checked whether the objective evaluation value was related to the subjective evaluation value. From results, we were able to see the characteristic relationship between subjective assessment and objective assessment.

  • A Hardware-Trojan Classification Method Using Machine Learning at Gate-Level Netlists Based on Trojan Features

    Kento HASEGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1427-1438

    Due to the increase of outsourcing by IC vendors, we face a serious risk that malicious third-party vendors insert hardware Trojans very easily into their IC products. However, detecting hardware Trojans is very difficult because today's ICs are huge and complex. In this paper, we propose a hardware-Trojan classification method for gate-level netlists to identify hardware-Trojan infected nets (or Trojan nets) using a support vector machine (SVM) or a neural network (NN). At first, we extract the five hardware-Trojan features from each net in a netlist. These feature values are complicated so that we cannot give the simple and fixed threshold values to them. Hence we secondly represent them to be a five-dimensional vector and learn them by using SVM or NN. Finally, we can successfully classify all the nets in an unknown netlist into Trojan ones and normal ones based on the learned classifiers. We have applied our machine-learning-based hardware-Trojan classification method to Trust-HUB benchmarks. The results demonstrate that our method increases the true positive rate compared to the existing state-of-the-art results in most of the cases. In some cases, our method can achieve the true positive rate of 100%, which shows that all the Trojan nets in an unknown netlist are completely detected by our method.

  • New Estimation Method of Pedestrian's Running Out into Road by Using Pressure Sensor and Moving Record for Traffic Safety

    Tomotaka WADA  Go NAKAGAMI  Susumu KAWAI  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    482-490

    We have developed Pedestrian-Vehicular Collision Avoidance Support System (P-VCASS) in order to protect pedestrians from traffic accidents and its effectiveness has been verified. P-VCASS is a system that takes into account pedestrian's moving situations. It gives warning to drivers of neighboring vehicles in advance if there is a possibility of collision between vehicles and pedestrians. There are pedestrians to move around. They are dangerous for vehicle drivers because they have high probability of running out into the road suddenly. Hence, we need to take into account the presence of them. In this paper, we propose a new estimation method of pedestrian's running out into road by using pressure sensor and moving record. We show the validity of the proposed system by experiments using a vehicle and a pedestrian terminal in the intersection. As a result, we show that a driver of vehicle is able to detect dangerous pedestrians quickly and accurately.

  • Character-Position-Free On-Line Handwritten Japanese Text Recognition by Two Segmentation Methods

    Jianjuan LIANG  Bilan ZHU  Taro KUMAGAI  Masaki NAKAGAWA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/01/06
      Vol:
    E99-D No:4
      Page(s):
    1172-1181

    The paper presents a recognition method of character-position-free on-line handwritten Japanese text patterns to allow a user to overlay characters freely without confirming previously written characters. To develop this method, we first collected text patterns written without wrist or elbow support and without visual feedback and then prepared large sets of character-position-free handwritten Japanese text patterns artificially from normally handwritten text patterns. The proposed method sets each off-stroke between real strokes as undecided and evaluates the segmentation probability by SVM model. Then, the optimal segmentation-recognition path can be effectively found by Viterbi search in the candidate lattice, combining the scores of character recognition, geometric features, linguistic context, as well as the segmentation scores by SVM classification. We test this method on variously overlaid sample patterns, as well as on the above-mentioned collected handwritten patterns, and verify that its recognition rates match those of the latest recognizer for normally handwritten horizontal Japanese text with no serious speed restriction in practical applications.

  • 3D CG Image Quality Metrics by Regions with 8 Viewpoints Parallax Barrier Method

    Norifumi KAWABATA  Masaru MIYAO  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1696-1708

    Many previous studies on image quality assessment of 3D still images or video clips have been conducted. In particular, it is important to know the region in which assessors are interested or on which they focus in images or video clips, as represented by the ROI (Region of Interest). For multi-view 3D images, it is obvious that there are a number of viewpoints; however, it is not clear whether assessors focus on objects or background regions. It is also not clear on what assessors focus depending on whether the background region is colored or gray scale. Furthermore, while case studies on coded degradation in 2D or binocular stereoscopic videos have been conducted, no such case studies on multi-view 3D videos exist, and therefore, no results are available for coded degradation according to the object or background region in multi-view 3D images. In addition, in the case where the background region is gray scale or not, it was not revealed that there were affection for gaze point environment of assessors and subjective image quality. In this study, we conducted experiments on the subjective evaluation of the assessor in the case of coded degradation by JPEG coding of the background or object or both in 3D CG images using an eight viewpoint parallax barrier method. Then, we analyzed the results statistically and classified the evaluation scores using an SVM.

1-20hit(62hit)