The search functionality is under construction.

Keyword Search Result

[Keyword] Sequence-Pair(9hit)

1-9hit
  • A Method of Analog IC Placement with Common Centroid Constraints

    Keitaro UE  Kunihiro FUJIYOSHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:1
      Page(s):
    339-346

    To improve immunity against process gradients, a common centroid constraint, in which every pair of capacitors should be placed symmetrically with respect to a common center point, is widely used. The pair of capacitors are derived by dividing some original capacitors into two halves. Xiao et al. proposed a method to obtain a placement which satisfies the common centroid constraints, but this method has a defect. In this paper, we propose a decoding algorithm to obtain a placement which satisfies common centroid constraints.

  • Regularity-Oriented Analog Placement with Conditional Design Rules

    Shigetoshi NAKATAKE  Masahiro KAWAKITA  Takao ITO  Masahiro KOJIMA  Michiko KOJIMA  Kenji IZUMI  Tadayuki HABASAKI  

     
    PAPER-Physical Level Design

      Vol:
    E93-A No:12
      Page(s):
    2389-2398

    This paper presents a novel regularity evaluation of placement structure and techniques for handling conditional design rules along with dynamic diffusion sharing and well island generation, which are developed based on Sequence-Pair. The regular structures such as topological rows, arrays and repetitive structures are characterized by the way of forming sub-sequences of a sequence-pair. A placement objective is formulated balancing the regularity and the area efficiency. Furthermore, diffusion sharing and well island can be also identified looking into forming of a sequence-pair. In experiments, we applied our regularity-oriented placement mixed with the constraint-driven technique to real analog designs, and attained the results comparable to manual designs even when imposing symmetry constraints. Besides, the results also revealed the regularity serves to increase row-structures applicable to the diffusion sharing for area saving and wire-length reduction.

  • A Relocation Method for Circuit Modifications

    Kunihiko YANAGIBASHI  Yasuhiro TAKASHIMA  Yuichi NAKAMURA  

     
    PAPER-Circuit Synthesis

      Vol:
    E90-A No:12
      Page(s):
    2743-2751

    In this paper, we propose a novel migration method. In this method, the resultant placement retains the structure of the original placement, called model placement, as much as possible. For this purpose, we minimize the sum of the difference in area between the model placement and the relocated one and the total amount of displacement between them. Moreover, to achieve a short runtime, we limit the solution space and change the packing origin in the optimization process. We construct the system on Sequence-Pair. Experimental results show that our approach preserves the chip area and the overall circuit structure with 98% less runtime than that realized by naive simulated annealing.

  • A Device-Level Placement with Schema Based Clusters in Analog IC Layouts

    Takashi NOJIMA  Xiaoke ZHU  Yasuhiro TAKASHIMA  Shigetoshi NAKATAKE  Yoji KAJITANI  

     
    PAPER-Analog Layout

      Vol:
    E87-A No:12
      Page(s):
    3301-3308

    A challenge to an automated layout of analog ICs starts with the insight into high quality placements crafted by experts. We observe first that matched devices or elemental functions such as input, output, amplifiers, etc are clustered. Second, devices in the same cluster are located faithfully to the drawn schema. Third, these two features are simultaneously fulfilled in a well-compacted placement. This paper proposes a novel device-level placement that simulates the above features based on Sequence-Pair. A slight modification of the meaning, say, of relation "A is left-of B" to relation "A is not right-of B" enlarges the freedom and allows a neater compaction of clusters allowing zigzag border curves. As the consequence, clusters are placed faithfully to relative position in the schema. We tested our algorithm for industrial instances and compared results with those by manual design. The results showed better features in performance figures than the those of manual designs by, on average, 13.5% and 21.2% with respect to the area and total net-length.

  • An Improved Method of Convex Rectilinear Block Packing Based on Sequence-Pair

    Kazuya WAKATA  Hiroaki SAITO  Kunihiro FUJIYOSHI  Keishi SAKANUSHI  Takayuki OBATA  Chikaaki KODAMA  

     
    PAPER-Place and Routing

      Vol:
    E86-A No:12
      Page(s):
    3148-3157

    In this paper, for convex rectilinear block packing problem, we propose 1) a novel algorithm to obtain a packing based on a given sequence-pair in O(n2) time (conventional method needs O(n3) time), where n is the number of rectangle sub-blocks made from convex blocks, 2) a move operation for Simulated Annealing which is symmetric and can guarantee reachability for the first time, and 3) a method to generate a random adjacent sequence-pair in O(n2) time. By using 1), 2) and 3) together, the time complexity of the inner loop in Simulated Annealing becomes surely O(n2) time. Experimental results show that the proposed algorithm is faster than the conventional ones in practical and the wire length as well as packing area is taken into consideration in the proposed method.

  • Red-Black Interval Trees in Device-Level Analog Placement

    Sarat C. MARUVADA  Karthik KRISHNAMOORTHY  Florin BALASA  Lucian M. IONESCU  

     
    PAPER-Analog Design

      Vol:
    E86-A No:12
      Page(s):
    3127-3135

    The traditional way of approaching device-level placement problems for analog layout is to explore a huge search space of absolute placement representations, where cells are allowed to illegally overlap during their moves. This paper presents a novel exploration technique for analog placement, operating on a subset of tree representations of the layout, where the typical presence of an arbitrary number of symmetry groups of devices is directly taken into account during the search of the solution space. The efficiency of the novel approach is due to the use of red-black interval trees, data structures employed to support operations on dynamic sets of intervals.

  • An Efficient Decoding Method of Sequence-Pair with Reduced Redundancy

    Chikaaki KODAMA  Kunihiro FUJIYOSHI  

     
    PAPER-Physical Design

      Vol:
    E85-A No:12
      Page(s):
    2785-2794

    The sequence-pair was proposed as a representation method of block placement to determine the densest possible placement of rectangular modules in VLSI layout design. A method of achieving bottom left corner packing in O(n2) time based on a given sequence-pair of n rectangles was proposed using horizontal/vertical constraint graphs. Also, a method of determining packing from a sequence-pair in O(n log n) time was proposed. Another method of obtaining packing in O(n log log n) time was recently proposed, but further improvement was still required. In this paper, we propose a method of obtaining packing via the Q-sequence (representation of rectangular dissection) in O(n+k) time from a given sequence-pair of n rectangles with k subsequences called adjacent crosses, given the position of adjacent crosses and the insertion order of dummy modules into adjacent crosses. The position of adjacent crosses and insertion order of dummy modules can be obtained from a sequence-pair in O(n+k) time using the conventional method. Here, we prove that arbitrary packing can be represented by a sequence-pair, keeping the value of k not more than n-3. Therefore, we can determine packing from a sequence-pair with k of O(n) in linear time using the proposed method and the conventional method.

  • Using Non-slicing Topological Representations for Analog Placement

    Florin BALASA  Sarat C. MARUVADA  

     
    PAPER-Analog Design

      Vol:
    E84-A No:11
      Page(s):
    2785-2792

    Layout design for analog circuits has historically been a time consuming, error-prone, manual task. Its complexity results not so much from the number of devices, as from the complex interactions among devices or with the operating environment, and also from continuous-valued performance specifications. This paper addresses the problem of device-level placement for analog layout in a non-traditional way. Different from the classic approaches--exploring a huge search space with a combinatorial optimization technique, where the cells are represented by means of absolute coordinates, being allowed to illegally overlap during their moves in the chip plane--this paper advocates the use of non-slicing topological representations, like (symmetric-feasible) sequence-pairs, ordered- and binary- trees. Extensive tests, processing industrial analog designs, have shown that using skillfully the symmetry constraints (very typical to analog circuits) to remodel the solution space of the encoding systems, the topological representation techniques can achieve a better computation speed than the traditional approaches, while obtaining a similar high quality of the designs.

  • The 3D-Packing by Meta Data Structure and Packing Heuristics

    Hiroyuki YAMAZAKI  Keishi SAKANUSHI  Shigetoshi NAKATAKE  Yoji KAJITANI  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    639-645

    The three dimensional (3D) packing problem is to arrange given rectangular boxes in a rectangular box of the minimum volume without overlapping each other. As an approach, this paper introduces the system of three sequences of the box labels, the sequence-triple, to encode the topology of the 3D-packing. The topology is the system of relative relations in pairs of boxes such as right-of, above, front-of, etc. It will be proved that the sequence-triple represents the topology of the tractable 3D-packings which is a 3D-packing such that there is an order of the boxes along which all the boxes are extracted one by one in a certain fixed direction without disturbing other remaining boxes. The idea is extended to the system of five ordered sequences, the sequence-quintuple. A decoding rule is given by which any 3D-packing is represented. These coding systems are applied to design heuristic algorithms by simulated annealing which search the codes for better 3D-packings. Experimental results were very convincing its usefulness as automated packing algorithms.