The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

4981-5000hit(21534hit)

  • Physical Optics Radiation Integrals with Frequency-Independent Number of Division utilizing Fresnel Zone Number Localization and Adaptive Sampling Method

    Takayuki KOHAMA  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:12
      Page(s):
    1134-1141

    The physical optics (PO) approximation is one of the widely-used techniques to calculate scattering fields with a reasonable accuracy in the high frequency region. The computational load of PO radiation integral dramatically increases at higher frequencies since it is proportional to the electrical size of scatterer. In order to suppress this load, a variety of techniques, such as the asymptotic evaluation by the stationary phase method (SP), the equivalent edge currents (EECs), the low-order polynomial expansion method and the fast physical optics (FPO), have been proposed and developed. The adaptive sampling method (ASM) proposed by Burkholder is also one of the techniques where the sampling points in radiation integral should be adaptively determined based upon the phase change of integrand. We proposed a quite different approach named ``Localization of the radiation integrals.'' This localization method suggests that only the small portions of the integration with a slow phase change contribute to the scattering field. In this paper, we newly introduce the ASM in the localization method and applied the proposed method into the radar cross section (RCS) analysis of 2-dimensional strip and cylinder. We have confirmed that the proposed method provides the frequency-independent number of division in the radiation integrals and computational time and accuracy. As the starting point for extension to 3-D case, the application of the proposed method for a reflection from an infinite PEC plane and a part of sphere was also examined.

  • A Novel Construction of Asymmetric ZCZ Sequence Sets from Interleaving Perfect Sequence

    Longye WANG  Xiaoli ZENG  Hong WEN  

     
    PAPER-Sequences

      Vol:
    E97-A No:12
      Page(s):
    2556-2561

    An asymmetric zero correlation zone (A-ZCZ) sequence set is a type of ZCZ sequence set and consists of multiple sequence subsets. It is the most important property that is the cross-correlation function between arbitrary sequences belonging to different sequence subsets has quite a large zero-cross-correlation zone (ZCCZ). Our proposed A-ZCZ sequence sets can be constructed based on interleaved technique and orthogonality-preserving transformation by any perfect sequence of length P=Nq(2k+1) and Hadamard matrices of order T≥2, where N≥1, q≥1 and k≥1. If q=1, the novel sequence set is optimal ZCZ sequence set, which has parameters (TP,TN,2k+1) for all positive integers P=N(2k+1). The proposed A-ZCZ sequence sets have much larger ZCCZ, which are expected to be useful for designing spreading sequences for QS-CDMA systems.

  • Modified Pseudo Affine Projection Algorithm for Feedback Cancellation in Hearing Aids

    Keunsang LEE  Younghyun BAEK  Dongwook KIM  Junil SOHN  Youngcheol PARK  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:12
      Page(s):
    2645-2648

    This paper presents an adaptive feedback canceller (AFC) based on a pseudo affine projection (PAP) algorithm that can provide fast and stable adaptation to the time-varying environment. The proposed algorithm utilizes the adaptive linear prediction (LP) to obtain the LP coefficients of input signal model and the inverse gain filter (IGF) to alleviate the effect of compensation gain. As a result, when the input is model as an AR signal, the proposed algorithm satisfies the condition for having an almost unbiased estimatie of the feedback path and then its performance is relatively independent of the gain setting of hearing aids. Simulation results showed that the proposed algorithm is capable of obtaining unbaised feedback path estimates and high speech quality.

  • On Renyi Entropies and Their Applications to Guessing Attacks in Cryptography

    Serdar BOZTAS  

     
    INVITED PAPER

      Vol:
    E97-A No:12
      Page(s):
    2542-2548

    We consider single and multiple attacker scenarios in guessing and obtain bounds on various success parameters in terms of Renyi entropies. We also obtain a new derivation of the union bound.

  • An Anonymous Reputation System with Reputation Secrecy for Manager

    Toru NAKANISHI  Nobuo FUNABIKI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:12
      Page(s):
    2325-2335

    In anonymous reputation systems, where after an interaction between anonymous users, one of the users evaluates the peer by giving a rating. Ratings for a user are accumulated, which becomes the reputation of the user. By using the reputation, we can know the reliability of an anonymous user. Previously, anonymous reputation systems have been proposed, using an anonymous e-cash scheme. However, in the e-cash-based systems, the bank grasps the accumulated reputations for all users, and the fluctuation of reputations. These are private information for users. Furthermore, the timing attack using the deposit times is possible, which makes the anonymity weak. In this paper, we propose an anonymous reputation system, where the reputations of users are secret for even the reputation manager such as the bank. Our approach is to adopt an anonymous credential certifying the accumulated reputation of a user. Initially a user registers with the reputation manager, and is issued an initial certificate. After each interaction with a rater, the user as the ratee obtains an updated certificate certifying the previous reputation summed up by the current rating. The update protocol is based on the zero-knowledge proofs, and thus the reputations are secret for the reputation manager. On the other hand, due to the certificate, the user cannot maliciously alter his reputation.

  • Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users

    Sumiko MIYATA  Katsunori YAMAOKA  Hirotsugu KINOSHITA  

     
    PAPER-Network

      Vol:
    E97-B No:12
      Page(s):
    2706-2719

    We have proposed a novel call admission control (CAC) method for maximizing total user satisfaction in a heterogeneous traffic network and showed their effectiveness by using the optimal threshold from numerical analysis [1],[2]. With these CAC methods, it is assumed that only selfish users exist in a network. However, we need to consider the possibility that some cooperative users exist who would agree to reduce their requested bandwidth to improve another user's Quality of Service (QoS). Under this assumption, conventional CAC may not be optimal. If there are cooperative users in the network, we need control methods that encourage such user cooperation. However, such “encourage” control methods have not yet been proposed. Therefore, in this paper, we propose novel CAC methods for cooperative users by using queueing theory. Numerical analyses show their effectiveness. We also analyze the characteristics of the optimal control parameter of the threshold.

  • Performance of Overloaded MIMO-OFDM System with Repetition Code

    Hikari MATSUOKA  Yoshihito DOI  Tatsuro YABE  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:12
      Page(s):
    2767-2775

    This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.

  • Design of Circularly Polarized and Electrically Small Antenna with Omnidirectional Radiation Pattern

    Kittima LERTSAKWIMARN  Chuwong PHONGCHAROENPANICH  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:12
      Page(s):
    2739-2746

    This paper presents an electrically small and circularly polarized antenna with an omnidirectional radiation pattern. The antenna consists of a horizontal loop element enclosed by two U-shaped elements and a vertical element from the feeding point. The radiation pattern of the circular polarization is omnidirectional and has a maximum gain of -2dBic in parallel to the ground plane at the 900MHz band. The antenna dimensions are 48 × 20 × 13.8mm (0.14λ × 0.06λ × 0.04λ) with ka =0.476 (i.e. < 0.5), where k is the wavenumber at the resonant frequency and a is the radius of a sphere surrounding the antenna. The dimension corresponds to the definition of an electrically small antenna. The omnidirectional circularly polarized pattern of a prototype antenna shows good agreement with that of the simulation. In addition, this paper introduces a mechanism that generates omnidirectional circular polarization from electrically small antennas.

  • Optimal Cooperative Routing Protocol for Efficient In-Network Cache Management in Content-Centric Networks

    Saran TARNOI  Wuttipong KUMWILAISAK  Yusheng JI  

     
    PAPER

      Vol:
    E97-B No:12
      Page(s):
    2627-2640

    This paper presents an optimal cooperative routing protocol (OCRP) aiming to improve the in-network cache utilization of the Content-Centric Networking (CCN). The objective of OCRP is to selectively aggregate the multiple flows of interest messages onto the same path in order to improve the cache utilization while mitigating the cache contention of the Content Stores (CSs) of CCN routers on the routing path. The proposed routing protocol consists of three processes: (1) Prefix Popularity Observation; (2) Prefix Group (Un)Subscription; and (3) Forwarding Information Base (FIB) Reconstruction. Prefix Popularity Observation observes the popularly cited prefixes to activate a prefix group (un)subscription function, which lets the Designated Router (DR) know which requester router wants to either join or leave a prefix group. Prefix Group (Un)Subscription lets the DR know which requester router is demanding to join or leave which prefix group. FIB Reconstruction reconstructs the FIB entries of the CCN routers involved in the newly computed optimal cooperative path of all prefix groups. The optimal routing path is obtained by binary linear optimization under a flow conservation constraint, cache contention mitigating constraint, and path length constraint. Two metrics of server load and round-trip hop distance are used to measure the performance of the proposed routing protocol. Simulation results from various network scenarios and various settings show advantages over the shortest path routing and our previously proposed cooperative routing schemes.

  • Audio Watermarking Based on Eigenvalue Decomposition

    Pranab KUMAR DHAR  Tetsuya SHIMAMURA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:12
      Page(s):
    2658-2661

    This letter presents a new blind audio watermarking scheme using eigenvalue decomposition (EVD). Initially, the original audio is divided into frames and the samples of each frame are arranged into a square matrix. EVD is applied to each of these matrices. Watermark data is embedded into the largest eigenvalue of each diagonal matrix by quantization. Data embedding rate of the proposed scheme is 172.39bps. Simulation results confirm the imperceptibility of the proposed scheme and its higher robustness against various attacks compared to the state-of-the-art watermarking methods available in the literature.

  • Sparse FIR Filter Design Using Binary Particle Swarm Optimization

    Chen WU  Yifeng ZHANG  Yuhui SHI  Li ZHAO  Minghai XIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:12
      Page(s):
    2653-2657

    Recently, design of sparse finite impulse response (FIR) digital filters has attracted much attention due to its ability to reduce the implementation cost. However, finding a filter with the fewest number of nonzero coefficients subject to prescribed frequency domain constraints is a rather difficult problem because of its non-convexity. In this paper, an algorithm based on binary particle swarm optimization (BPSO) is proposed, which successively thins the filter coefficients until no sparser solution can be obtained. The proposed algorithm is evaluated on a set of examples, and better results can be achieved than other existing algorithms.

  • Automation of Model Parameter Estimation for Random Telegraph Noise

    Hirofumi SHIMIZU  Hiromitsu AWANO  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E97-A No:12
      Page(s):
    2383-2392

    The modeling of random telegraph noise (RTN) of MOS transistors is becoming increasingly important. In this paper, a novel method is proposed for realizing automated estimation of two important RTN-model parameters: the number of interface-states and corresponding threshold voltage shift. The proposed method utilizes a Gaussian mixture model (GMM) to represent the voltage distributions, and estimates their parameters using the expectation-maximization (EM) algorithm. Using information criteria, the optimal estimation is automatically obtained while avoiding overfitting. In addition, we use a shared variance for all the Gaussian components in the GMM to deal with the noise in RTN signals. The proposed method improved estimation accuracy when the large measurement noise is observed.

  • Melanosome Tracking Using Automatic Error Correction

    Toshiaki OKABE  Kazuhiro HOTTA  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:12
      Page(s):
    3201-3209

    This paper proposes an automatic error correction method for melanosome tracking. Melanosomes in intracellular images are currently tracked manually when investigating diseases, and an automatic tracking method is desirable. We detect all melanosome candidates by SIFT with 2 different parameters. Of course, the SIFT also detects non-melanosomes. Therefore, we use the 4-valued difference image (4-VDimage) to eliminate non-melanosome candidates. After tracking melanosome, we re-track the melanosome with low confidence again from t+1 to t. If the results from t to t+1 and from t+1 to t are different, we judge that initial tracking result is a failure, the melanosome is eliminated as a candidate and re-tracking is carried out. Experiments demonstrate that our method can correct the error and improves the accuracy.

  • Occlusion-Robust Human Tracking with Integrated Multi-View Depth Imagery

    Kenichiro FUKUSHI  Itsuo KUMAZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:12
      Page(s):
    3181-3191

    In this paper, we present a computer vision-based human tracking system with multiple stereo cameras. Many widely used methods, such as KLT-tracker, update the trackers “frame-to-frame,” so that features extracted from one frame are utilized to update their current state. In contrast, we propose a novel optimization technique for the “multi-frame” approach that computes resultant trajectories directly from video sequences, in order to achieve high-level robustness against severe occlusion, which is known to be a challenging problem in computer vision. We developed a heuristic optimization technique to estimate human trajectories, instead of using dynamic programming (DP) or an iterative approach, which makes our method sufficiently computationally efficient to operate in realtime. Six video sequences where one to six people walk in a narrow laboratory space are processed using our system. The results confirm that our system is capable of tracking cluttered scenes in which severe occlusion occurs and people are frequently in close proximity to each other. Moreover, minimal information is required for tracking, instead of full camera images, which is communicated over the network. Hence, commonly used network devices are sufficient for constructing our tracking system.

  • Predicting Vectorization Profitability Using Binary Classification

    Antoine TROUVÉ  Arnaldo J. CRUZ  Dhouha BEN BRAHIM  Hiroki FUKUYAMA  Kazuaki J. MURAKAMI  Hadrien CLARKE  Masaki ARAI  Tadashi NAKAHIRA  Eiji YAMANAKA  

     
    PAPER-Software System

      Pubricized:
    2014/08/27
      Vol:
    E97-D No:12
      Page(s):
    3124-3132

    Basic block vectorization consists in realizing instruction-level parallelism inside basic blocks in order to generate SIMD instructions and thus speedup data processing. It is however problematic, because the vectorized program may actually be slower than the original one. Therefore, it would be useful to predict beforehand whether or not vectorization will actually produce any speedup. This paper proposes to do so by expressing vectorization profitability as a classification problem, and by predicting it using a machine learning technique called support vector machine (SVM). It considers three compilers (icc, gcc and llvm), and a benchmark suite made of 151 loops, unrolled with factors ranging from 1 to 20. The paper further proposes a technique that combines the results of two SVMs to reach 99% of accuracy for all three compilers. Moreover, by correctly predicting unprofitable vectorizations, the technique presented in this paper provides speedups of up to 2.16 times, 2.47 times and 3.83 times for icc, gcc and LLVM, respectively (9%, 18% and 56% on average). It also lowers to less than 1% the probability of the compiler generating a slower program with vectorization turned on (from more than 25% for the compilers alone).

  • An Interdomain Overlay Network Based on ISP Alliances for Economically Efficient Interdomain Traffic Routing

    Xun SHAO  Go HASEGAWA  Yoshiaki TANIGUCHI  Hirotaka NAKANO  

     
    PAPER-Information Network

      Vol:
    E97-D No:12
      Page(s):
    3163-3170

    As interdomain routing protocol, BGP is fairly simple, and allows plenty of policies based on ISPs' preferences. However, recent studies show that BGP routes are often non-optimal in end-to-end performance, due to technological and economic reasons. To obtain improved end-to-end performance, overlay routing, which can change traffic routing in application layer, has gained attention. However, overlay routing often violates BGP routing policies and harms ISPs' interest. In order to take the advantage of overlay to improve the end-to-end performance, while overcoming the disadvantages, we propose a novel interdomain overlay structure, in which overlay nodes are operated by ISPs within an ISP alliance. The traffic between ISPs within the alliance could be routed by overlay routing, and the other traffic would still be routed by BGP. As economic structure plays very important role in interdomain routing, so we propose an effective and fair charging and pricing scheme within the ISP alliance in correspondence with the overlay routing structure. Finally, we give a simple pricing algorithm, with which ISPs can find the optimal prices in the practice. By mathematical analysis and numerical experiments, we show the correctness and convergence of the pricing algorithm.

  • An Optimal Implementation of the Approximate String Matching on the Hierarchical Memory Machine, with Performance Evaluation on the GPU

    Duhu MAN  Koji NAKANO  Yasuaki ITO  

     
    PAPER-GPU

      Vol:
    E97-D No:12
      Page(s):
    3063-3071

    The Hierarchical Memory Machine (HMM) is a theoretical parallel computing model that captures the essence of computing on CUDA-enabled GPUs. The approximate string matching (ASM) for two strings X and Y of length m and n is a task to find a substring of Y most similar to X. The main contribution of this paper is to show an optimal parallel algorithm for the approximate string matching on the HMM and implement it on GeForce GTX 580 GPU. Our algorithm runs in $O({nover w}+{mnover dw}+{nLover p}+{mnlover p})$ time units on the HMM with p threads, d streaming processors, memory band width w, global memory access latency L, and shared memory access latency l. We also show that the lower bound of the computing time is $Omega({nover w}+{mnover dw}+{nLover p}+{mnlover p})$ time units. Thus, our algorithm for the approximate string matching is time optimal. Further, we implemented our algorithm on GeForce GTX 580 GPU and evaluated the performance. The experimental results show that the ASM of two strings of 1024 and 4M (=222) characters can be done in 419.6ms, while the sequential algorithm can compute it in 27720ms. Thus, our implementation on the GPU attains a speedup factor of 66.1 over the single CPU implementation.

  • Degree-of-Freedom Based Transmission Protocol Design with Optimization for Multi-Cell Multi-User Green Systems

    Chunguo LI  Yongping ZHANG  John M. CIOFFI  Luxi YANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:12
      Page(s):
    2784-2789

    The joint power allocation (PA) issue is studied in multi-user three-cell systems under the degree-of-freedom (DoF) based transmission protocol. This protocol makes all the interferences received at each user orthogonal to the useful signal at the same user by Jafar's topological interference management through index coding, which is proved to offer full DoF. Under this protocol, we formulate the joint power allocations problem based on the objective of energy efficiency under the required quality-of-service constraint. Due to the highly complicated Lagrangian equation, the properties of Lambert function are widely exploited to solve the problem using a closed-form expression. It is discovered that the relationship among the optimal power coefficients are completely different from that of the well-known water-filling method. Simulations demonstrate the energy efficiency of the designed scheme.

  • Designing Mobility Models Based on Relational Graph

    Zhenwei DING  Yusuke OMORI  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER-Wireless Network

      Vol:
    E97-D No:12
      Page(s):
    3007-3015

    Simulating the mobility of mobile devices has always been an important issue as far as wireless networks are concerned because mobility needs to be taken into account in various situations in wireless networks. Researchers have been trying, for many years, to improve the accuracy and flexibility of mobility models. Although recent progress of designing mobility models based on social graph have enhanced the performance of mobility models and made them more convenient to use, we believe the accuracy and flexibility of mobility models could be further improved by taking a more integrated structure as the input. In this paper, we propose a new way of designing mobility models on the basis of relational graph [1] which is a graph depicting the relation among objects, e.g. relation between people and people, and also people and places. Moreover, some novel mobility features were introduced in the proposed model to provide social, spatial and temporal properties in order to produce results similar to real mobility data. It was demonstrated by simulation that these measures could generate results similar to real mobility data.

  • Fast SAO Estimation Algorithm and Its Implementation for 8K×4K @ 120 FPS HEVC Encoding

    Jiayi ZHU  Dajiang ZHOU  Shinji KIMURA  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E97-A No:12
      Page(s):
    2488-2497

    High efficiency video coding (HEVC) is the new generation video compression standard. Sample adaptive offset (SAO) is a new compression tool adopted in HEVC which reduces the distortion between original samples and reconstructed samples. SAO estimation is the process of determining SAO parameters in video encoding. It is divided into two phases: statistic collection and parameters determination. There are two difficulties for VLSI implementation of SAO estimation. The first is that there are huge amount of samples to deal with in statistic collection phase. The other is that the complexity of Rate Distortion Optimization (RDO) in parameters determination phase is very high. In this article, a fast SAO estimation algorithm and its corresponding VLSI architecture are proposed. For the first difficulty, we use bitmaps to collect statistics of all the 16 samples in one 4×4 block simultaneously. For the second difficulty, we simplify a series of complicated procedures in HM to balance the algorithms complexity and BD-rate performance. Experimental results show that the proposed algorithm maintains the picture quality improvement. The VLSI design based on this algorithm can be implemented using 156.32K gates, 8,832bits single port RAM for 8bits depth case. It can be synthesized to 400MHz @ 65nm technology and is capable of 8K×4K @ 120fps encoding.

4981-5000hit(21534hit)