The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TIA(1376hit)

441-460hit(1376hit)

  • Partial Reconfiguration of Flux Limiter Functions in MUSCL Scheme Using FPGA

    Mohamad Sofian ABU TALIP  Takayuki AKAMINE  Yasunori OSANA  Naoyuki FUJITA  Hideharu AMANO  

     
    PAPER-Computer System

      Vol:
    E95-D No:10
      Page(s):
    2369-2376

    Computational Fluid Dynamics (CFD) is used as a common design tool in the aerospace industry. UPACS, a package for CFD, is convenient for users, since a customized simulator can be built just by selecting desired functions. The problem is its computation speed, which is difficult to enhance by using the clusters due to its complex memory access patterns. As an economical solution, accelerators using FPGAs are hopeful candidate. However, the total scale of UPACS is too large to be implemented on small numbers of FPGAs. For cost efficient implementation, partial reconfiguration which dynamically loads only required functions is proposed in this paper. Here, the MUSCL scheme, which is used frequently in UPACS, is selected as a target. Partial reconfiguration is applied to the flux limiter functions (FLF) in MUSCL. Four FLFs are implemented for Turbulence MUSCL (TMUSCL) and eight FLFs are for Convection MUSCL (CMUSCL). All FLFs are developed independently and separated from the top MUSCL module. At start-up, only required FLFs are selected and deployed in the system without interfering the other modules. This implementation has successfully reduced the resource utilization by 44% to 63%. Total power consumption also reduced by 33%. Configuration speed is improved by 34-times faster as compared to full reconfiguration method. All implemented functions achieved at least 17 times speed-up performance compared with the software implementation.

  • Cumulative Differential Nonlinearity Testing of ADCs

    Hungkai CHEN  Yingchieh HO  Chauchin SU  

     
    PAPER-Measurement Technology

      Vol:
    E95-A No:10
      Page(s):
    1768-1775

    This paper proposes a cumulative DNL (CDNL) test methodology for the BIST of ADCs. It analyzes the histogram of the DNL of a predetermined k LSBs distance to determine the DNL and gain error. The advantage of this method over others is that the numbers of required code bins and required samples are significantly reduced. The simulation and measurements of a 12-bit ADC show that the proposed CDNL has an error of less than 5% with only 212 samples, which can only be achieved with 222 samples using the conventional method. It only needs 16 registers to store code bins in this experiment.

  • Non-coherent MIMO Communication Systems Employing per Transmit Antenna Differential Mapping (PADM)

    Hiroshi KUBO  Masatsugu HIGASHINAKA  Akihiro OKAZAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3242-3251

    This paper proposes non-coherent multiple-input multi-ple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. At a receiver, the proposed PADM employs adaptive maximum-likelihood detection (MLD). The features of PADM are as follows: 1) it has excellent tracking performance for fast time-varying fading channels, because it can detect transmitted data without needing channel state information (CSI); 2) it can be applied not only to transmit diversity (TD) but also to spatial multiplexing (SM). In this paper, we analyze the adaptive MLD based on pseudo matrix inversion and derive its metric for data detection. In order to satisfy requirements on multiple transmitted sequences for the adaptive MLD, this paper proposes a mapping rule for PADM. Next, this paper describes a receiver structure based on per-survivor processing (PSP), which can drastically reduce the complexity of adaptive MLD. Finally, computer simulations confirm that the proposed non-coherent MIMO communication systems employing PADM have excellent tracking capability for TD and SM on fast time-varying fading channels.

  • Exponential Regression-Based Software Reliability Model and Its Computational Aspect

    Shinya IKEMOTO  Tadashi DOHI  

     
    PAPER

      Vol:
    E95-A No:9
      Page(s):
    1461-1468

    An exponential regression-based model with stochastic intensity is developed to describe the software reliability growth phenomena, where the software testing metrics depend on the intensity process. For such a generalized modeling framework, the common maximum likelihood method cannot be applied any more to the parameter estimation. In this paper, we propose to use the pseudo maximum likelihood method for the parameter estimation and to seek not only the model parameters but also the software reliability measures approximately. It is shown in numerical experiments with real software fault data that the resulting software reliability models based on four parametric approximations provide the better goodness-of-fit performance than the common non-homogeneous Poisson process models without testing metric information.

  • Non-reference and Absolute Spatial Blur Estimation from Decoded Picture Only

    Naoya SAGARA  Takayuki SUZUKI  Kenji SUGIYAMA  

     
    LETTER-Quality Metrics

      Vol:
    E95-A No:8
      Page(s):
    1256-1258

    The non-reference method is widely useful to estimation picture quality on the decoder side. In this paper, we discuss the estimation method for spatial blur that divides the frequency zones by the absolute value of 64 coefficients with an 8-by-8 DCT and compares them. It is recognized that absolute blur estimation is possible with the decoded picture only.

  • Neuron-Like Responses and Bifurcations of a Generalized Asynchronous Sequential Logic Spiking Neuron Model

    Takashi MATSUBARA  Hiroyuki TORIKAI  

     
    PAPER-Nonlinear Problems

      Vol:
    E95-A No:8
      Page(s):
    1317-1328

    A generalized version of sequential logic circuit based neuron models is presented, where the dynamics of the model is modeled by an asynchronous cellular automaton. Thanks to the generalizations in this paper, the model can exhibit various neuron-like waveforms of the membrane potential in response to excitatory and inhibitory stimulus. Also, the model can reproduce four groups of biological and model neurons, which are classified based on existence of bistability and subthreshold oscillations, as well as their underlying bifurcations mechanisms.

  • Encoder-Unconstrained User Interactive Partial Decoding Scheme

    Chen LIU  Xin JIN  Tianruo ZHANG  Satoshi GOTO  

     
    PAPER-Coding & Processing

      Vol:
    E95-A No:8
      Page(s):
    1288-1296

    High-definition (HD) videos become more and more popular on portable devices these years. Due to the resolution mismatch between the HD video sources and the relative low-resolution screens of portable devices, the HD videos are usually fully decoded and then down-sampled (FDDS) for the displays, which not only increase the cost of both computational power and memory bandwidth, but also lose the details of video contents. In this paper, an encoder-unconstrained partial decoding scheme for H.264/AVC is presented to solve the problem by only decoding the object of interest (OOI) related region, which is defined by users. A simplified compression domain tracking method is utilized to ensure that the OOI locates in the center of the display area. The decoded partial area (DPA) adaptation, the reference block relocation (RBR) and co-located temporal Intra prediction (CTIP) methods are proposed to improve the visual quality for the DPA with low complexity. The simulation results show that the proposed partial decoding scheme provides an average of 50.16% decoding time reduction comparing to the fully decoding process. The displayed region also presents the original HD granularity of OOI. The proposed partial decoding scheme is especially useful for displaying HD video on the devices of which the battery life is a crucial factor.

  • Transmit Antenna Selection for Spatial Multiplexing UWB MIMO Systems Using Sorted QR Decomposition

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:8
      Page(s):
    1426-1429

    In this letter, a post-detection signal to noise ratio (SNR) is considered for transmit antenna selection, when a sorted QR decomposition (SQRD) algorithm is used for signal detection in spatial multiplexing (SM) ultra-wideband (UWB) multiple input multiple output systems. The post-detection SNR expression is obtained using a QR factorization algorithm based on a sorted Gram-Schmidt process. The employed antenna selection criterion is to utilize the largest minimum post-detection SNR value. It is shown via simulations that the antenna selection significantly enhances the BER performance of the SQRD-based SM UWB systems on a log-normal multipath fading channel.

  • Person Re-Identification by Spatial Pyramid Color Representation and Local Region Matching

    Chunxiao LIU  Guijin WANG  Xinggang LIN  Liang LI  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:8
      Page(s):
    2154-2157

    Person re-identification is challenging due to illumination changes and viewpoint variations in the multi-camera environment. In this paper, we propose a novel spatial pyramid color representation (SPCR) and a local region matching scheme, to explore person appearance for re-identification. SPCR effectively integrates color layout into histogram, forming an informative global feature. Local region matching utilizes region statistics, which is described by covariance feature, to find appearance correspondence locally. Our approach shows robustness to illumination changes and slight viewpoint variations. Experiments on a public dataset demonstrate the performance superiority of our proposal over state-of-the-art methods.

  • Asymmetric Learning Based on Kernel Partial Least Squares for Software Defect Prediction

    Guangchun LUO  Ying MA  Ke QIN  

     
    LETTER-Software Engineering

      Vol:
    E95-D No:7
      Page(s):
    2006-2008

    An asymmetric classifier based on kernel partial least squares is proposed for software defect prediction. This method improves the prediction performance on imbalanced data sets. The experimental results validate its effectiveness.

  • An Improved GPS/RFID Integration Method Based on Sequential Iterated Reduced Sigma Point Kalman Filter

    Jing PENG  Falin WU  Ming ZHU  Feixue WANG  Kefei ZHANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E95-B No:7
      Page(s):
    2433-2441

    In this paper, an improved GPS/RFID integration method based on Sequential Iterated Reduced Sigma Point Kalman Filter (SIRSPKF) is proposed for vehicle navigation applications. It is applied to improve the accuracy, reliability and availability of satellite positioning in the areas where the satellite visibility is limited. An RFID system is employed to assist the GPS system in achieving high accuracy positioning. Further, to reduce the measurement noise and decrease the computational complexity caused by the integrated GPS/RFID, SIRSPKF is investigated as the dominant filter for the proposed integration. Performances and computational complexities of different integration scenarios with different filters are compared in this paper. A field experiment shows that both accuracy and availability of positioning can be improved significantly by this low-cost GPS/RFID integration method with the reduced computational load.

  • DISWOP: A Novel Scheduling Algorithm for Data-Intensive Workflow Optimizations

    Yuyu YUAN  Chuanyi LIU  Jie CHENG  Xiaoliang WANG  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E95-D No:7
      Page(s):
    1839-1846

    Execution performance is critical for large-scale and data-intensive workflows. This paper proposes DISWOP, a novel scheduling algorithm for data-intensive workflow optimizations; it consists of three main steps: workflow process generation, task & resource mapping, and task clustering. To evaluate the effectiveness and efficiency of DISWOP, a comparison evaluation of different workflows is conducted a prototype workflow platform. The results show that DISWOP can speed up execution performance by about 1.6-2.3 times depending on the task scale.

  • Potential Game Based Distributed Control for Voronoi Coverage Problems with Obstacle Avoidance

    Saori TERAOKA  Toshimitsu USHIO  Takafumi KANAZAWA  

     
    PAPER-Concurrent Systems

      Vol:
    E95-A No:7
      Page(s):
    1156-1163

    It is known that the optimal sensor coverage of a mission space is performed by a Voronoi partition, which is called a Voronoi coverage problem. We consider the case that the mission space has several obstacles where mobile sensors cannot be deployed and search an optimal deployment to maximize the sensing performance. Inspired by the potential field method, we introduce a repulsive potential for obstacle avoidance and define the objective function by a combination of two functions: one for evaluation of the sensing performance and the other for obstacle avoidance. We introduce a space where a sensor can move, called its moving space. In general, a moving space may not coincide with the mission space. We assume that the respective moving spaces of each sensor may differ from each other. By introducing a barycentric coordinate over the moving space, we show that the Voronoi coverage problem to maximize the objective function is transformed into a potential game. In potential games, local maximizers of a potential function are stable equilibrium points of the corresponding replicator dynamics. We propose a distributed sensor coverage control method based on the replicator dynamics to search a local maximizer of the objective function and a path to it. Using simulations, we also compare the proposed method with the Lloyd and TangentBug algorithm proposed by Breitenmoser et al.

  • Computationally Efficient ML Soft Decision Calculation for MIMO Systems with Two Spatial Streams

    Jaekwon KIM  Tae-Ho IM  Yong-Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2153-2156

    In this letter, we propose a computationally efficient maximum likelihood log-likelihood ratio (LLR) calculation method for multiple input multiple output (MIMO) systems with two spatial streams.

  • Finding Higher Order Differentials of MISTY1

    Yukiyasu TSUNOO  Teruo SAITO  Takeshi KAWABATA  Hirokatsu NAKAGAWA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:6
      Page(s):
    1049-1055

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it is recommended for Japanese e-Government ciphers by the CRYPTREC project. In this paper, we report on 12th order differentials in 3-round MISTY1 with FL functions and 44th order differentials in 4-round MISTY1 with FL functions both previously unknown. We also report that both data complexity and computational complexity of higher order differential attacks on 6-round MISTY1 with FL functions and 7-round MISTY1 with FL functions using the 46th order differential can be reduced to as much as 1/22 of the previous values by using multiple 44th order differentials simultaneously.

  • Application-Oriented Confidentiality and Integrity Dynamic Union Security Model Based on MLS Policy

    Mingfu XUE  Aiqun HU  Chunlong HE  

     
    LETTER-Dependable Computing

      Vol:
    E95-D No:6
      Page(s):
    1694-1697

    We propose a new security model based on MLS Policy to achieve a better security performance on confidentiality, integrity and availability. First, it realizes a combination of BLP model and Biba model through a two-dimensional independent adjustment of integrity and confidentiality. And, the subject's access range is adjusted dynamically according to the security label of related objects and the subject's access history. Second, the security level of the trusted subject is extended to writing and reading privilege range respectively, following the principle of least privilege. Third, it adjusts the objects' security levels after adding confidential information to prevent the information disclosure. Fourth, it uses application-oriented logic to protect specific applications to avoid the degradation of security levels. Thus, it can ensure certain applications operate smoothly. Lastly, examples are presented to show the effectiveness and usability of the proposed model.

  • Inertial Estimator Learning Automata

    Junqi ZHANG  Lina NI  Chen XIE  Shangce GAO  Zheng TANG  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E95-A No:6
      Page(s):
    1041-1048

    This paper presents an inertial estimator learning automata scheme by which both the short-term and long-term perspectives of the environment can be incorporated in the stochastic estimator – the long term information crystallized in terms of the running reward-probability estimates, and the short term information used by considering whether the most recent response was a reward or a penalty. Thus, when the short-term perspective is considered, the stochastic estimator becomes pertinent in the context of the estimator algorithms. The proposed automata employ an inertial weight estimator as the short-term perspective to achieve a rapid and accurate convergence when operating in stationary random environments. According to the proposed inertial estimator scheme, the estimates of the reward probabilities of actions are affected by the last response from environment. In this way, actions that have gotten the positive response from environment in the short time, have the opportunity to be estimated as “optimal”, to increase their choice probability and consequently, to be selected. The estimates become more reliable and consequently, the automaton rapidly and accurately converges to the optimal action. The asymptotic behavior of the proposed scheme is analyzed and it is proved to be ε-optimal in every stationary random environment. Extensive simulation results indicate that the proposed algorithm converges faster than the traditional stochastic-estimator-based S ERI scheme, and the deterministic-estimator-based DGPA and DPRI schemes when operating in stationary random environments.

  • Low-Complexity Coarse-Level Mode-Mapping Based H.264/AVC to H.264/SVC Spatial Transcoding for Video Conferencing

    Lei SUN  Jie LENG  Jia SU  Yiqing HUANG  Hiroomi MOTOHASHI  Takeshi IKENAGA  

     
    PAPER-Video Processing

      Vol:
    E95-D No:5
      Page(s):
    1313-1323

    Scalable Video Coding (SVC) was standardized as an extension of H.264/AVC with the intention to provide flexible adaptation to heterogeneous networks and different end-user requirements, which provides great scalability in multi-point applications such as video conferencing. However, due to the existence of H.264/AVC-based systems, transcoding between AVC and SVC becomes necessary. Most existing works focus on temporal transcoding, quality transcoding or SVC-to-AVC spatial transcoding while the straightforward re-encoding method requires high computational cost. This paper proposes a low-complexity AVC-to-SVC spatial transcoder based on coarse-level mode mapping for video conferencing scenes. First, to omit unnecessary motion estimations (ME) for layers with reduced resolution, an ME skipping scheme based on AVC mode distribution is proposed with an adaptive search range. Then a probability-profile based scheme is proposed for further mode skipping. After that 3 coarse-level mode-mapping methods are presented for fast mode decision and the adaptive usage of the 3 methods is discussed. Finally, motion vector (MV) refinement is introduced for further lower-layer time reduction. As for the top layer, direct encapsulation is proposed to preserve better quality and another scheme involving inter-layer predictions is also provided for bandwidth-crucial applications. Simulation results show that proposed transcoder achieves up to 92.6% time reduction without significant coding efficiency loss compared to re-encoding method.

  • A Phenomenological Study on Threshold Improvement via Spatial Coupling

    Keigo TAKEUCHI  Toshiyuki TANAKA  Tsutomu KAWABATA  

     
    LETTER-Information Theory

      Vol:
    E95-A No:5
      Page(s):
    974-977

    Kudekar et al. proved an interesting result in low-density parity-check (LDPC) convolutional codes: The belief-propagation (BP) threshold is boosted to the maximum-a-posteriori (MAP) threshold by spatial coupling. Furthermore, the authors showed that the BP threshold for code-division multiple-access (CDMA) systems is improved up to the optimal one via spatial coupling. In this letter, a phenomenological model for elucidating the essence of these phenomenon, called threshold improvement, is proposed. The main result implies that threshold improvement occurs for spatially-coupled general graphical models.

  • Mathematically Designing a Local Interaction Algorithm for Decentralized Network Systems

    Takeshi KUBO  Teruyuki HASEGAWA  Toru HASEGAWA  

     
    PAPER

      Vol:
    E95-B No:5
      Page(s):
    1547-1557

    In the near future, decentralized network systems consisting of a huge number of sensor nodes are expected to play an important role. In such a network, each node should control itself by means of a local interaction algorithm. Although such local interaction algorithms improve system reliability, how to design a local interaction algorithm has become an issue. In this paper, we describe a local interaction algorithm in a partial differential equation (or PDE) and propose a new design method whereby a PDE is derived from the solution we desire. The solution is considered as a pattern of nodes' control values over the network each of which is used to control the node's behavior. As a result, nodes collectively provide network functions such as clustering, collision and congestion avoidance. In this paper, we focus on a periodic pattern comprising sinusoidal waves and derive the PDE whose solution exhibits such a pattern by exploiting the Fourier method.

441-460hit(1376hit)