The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TIA(1376hit)

581-600hit(1376hit)

  • Improved Sequential Dependency Analysis Integrating Labeling-Based Sentence Boundary Detection

    Takanobu OBA  Takaaki HORI  Atsushi NAKAMURA  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:5
      Page(s):
    1272-1281

    A dependency structure interprets modification relationships between words or phrases and is recognized as an important element in semantic information analysis. With the conventional approaches for extracting this dependency structure, it is assumed that the complete sentence is known before the analysis starts. For spontaneous speech data, however, this assumption is not necessarily correct since sentence boundaries are not marked in the data. Although sentence boundaries can be detected before dependency analysis, this cascaded implementation is not suitable for online processing since it delays the responses of the application. To solve these problems, we proposed a sequential dependency analysis (SDA) method for online spontaneous speech processing, which enabled us to analyze incomplete sentences sequentially and detect sentence boundaries simultaneously. In this paper, we propose an improved SDA integrating a labeling-based sentence boundary detection (SntBD) technique based on Conditional Random Fields (CRFs). In the new method, we use CRF for soft decision of sentence boundaries and combine it with SDA to retain its online framework. Since CRF-based SntBD yields better estimates of sentence boundaries, SDA can provide better results in which the dependency structure and sentence boundaries are consistent. Experimental results using spontaneous lecture speech from the Corpus of Spontaneous Japanese show that our improved SDA outperforms the original SDA with SntBD accuracy providing better dependency analysis results.

  • Identifying High-Rate Flows Based on Sequential Sampling

    Yu ZHANG  Binxing FANG  Hao LUO  

     
    PAPER-Information Network

      Vol:
    E93-D No:5
      Page(s):
    1162-1174

    We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.

  • Discussion on "A Fuzzy Method for Medical Diagnosis of Headache"

    Kuo-Chen HUNG  Yu-Wen WOU  Peterson JULIAN  

     
    LETTER-Pattern Recognition

      Vol:
    E93-D No:5
      Page(s):
    1307-1308

    This paper is in response to the report of Ahn, Mun, Kim, Oh, and Han published in IEICE Trans. INF. & SYST., Vol.E91-D, No.4, 2008, 1215-1217. They tried to extend their previous paper that published on IEICE Trans. INF. & SYST., Vol.E86-D, No.12, 2003, 2790-2793. However, we will point out that their extension is based on the detailed data of knowing the frequency of three types. Their new occurrence information based on intuitionistic fuzzy set for medical diagnosis of headache becomes redundant. We advise researchers to directly use the detailed data to decide the diagnosis of headache.

  • Investigation of Adjustable Current-Voltage Characteristics and Hysteresis Phenomena for Multiple-Peak Negative Differential Resistance Circuit

    Kwang-Jow GAN  Dong-Shong LIANG  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:4
      Page(s):
    514-520

    A multiple-peak negative differential resistance (NDR) circuit made of standard Si-based metal-oxide-semiconductor field-effect-transistor (MOS) and SiGe-based heterojunction bipolar transistor (HBT) is demonstrated. We can obtain a three-peak I-V curve by connecting three cascoded MOS-HBT-NDR circuits by suitably designing the MOS parameters. This novel three-peak NDR circuit possesses the adjustable current-voltage characteristics and high peak-to-valley current ratio (PVCR). We can adjust the PVCR values to be as high as 11.5, 6.5, and 10.3 for three peaks, respectively. Because the NDR circuit is a very strong nonlinear element, we discuss the extrinsic hysteresis phenomena in this multiple-peak NDR circuit. The effect of series resistance on hysteresis phenomena is also investigated. Our design and fabrication of the NDR circuit is based on the standard 0.35 µm SiGe BiCMOS process.

  • Performance Analysis of MIMO Schemes in Residential Home Environment via Wideband MIMO Propagation Measurement

    Gia Khanh TRAN  Nguyen Dung DAO  Kei SAKAGUCHI  Kiyomichi ARAKI  Hiroshi IWAI  Tsutomu SAKATA  Koichi OGAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E93-A No:4
      Page(s):
    814-829

    This paper illustrates a large-scale MIMO propagation channel measurement in a real life environment and evaluates throughput performance of various MIMO schemes in that environment. For that purpose, 44 MIMO transceivers and a novel spatial scanner are fabricated for wideband MIMO channel measurements in the 5 GHz band. A total of more than 50,000 spatial samples in an area of 150 m2, which includes a bedroom, a Japanese room, a hallway, and the living and dining areas, are taken in a real residential home environment. Statistical properties of the propagation channel and throughput performance of various MIMO schemes are evaluated by using measured data. Propagation measurement results show large dynamic channel variations occurring in a real environment in which statistical properties of the channel, such as frequency correlation and spatial correlation are not stationary any more, and become functions of the SNR. Furthermore, evaluation of throughput shows that although MIMO schemes outperform the SISO system in most areas, open loop systems perform badly in the far areas with low SNR. Paying for the cost of CSI or partial CSI at Tx, closed loop and hybrid systems have superior performance compared to other schemes, especially in reasonable SNR areas ranging from 10 dB to 30 dB. Spatial correlation, which is common in Japanese wooden residences, is also found to be a dominant factor causing throughput degradation of the open loop MIMO schemes.

  • Distributed Medium Access Control with SDMA Support for WLANs

    Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:4
      Page(s):
    961-970

    With simultaneous multi-user transmissions, spatial division multiple access (SDMA) provides substantial throughput gain over the single user transmission. However, its implementation in WLANs with contention-based IEEE 802.11 MAC remains challenging. Problems such as coordinating and synchronizing the multiple users need to be solved in a distributed way. In this paper, we propose a distributed MAC protocol for WLANs with SDMA support. A dual-mode CTS responding mechanism is designed to accomplish the channel estimation and user synchronization required for SDMA. We analytically study the throughput performance of the proposed MAC, and dynamic parameter adjustment is designed to enhance the protocol efficiency. In addition, the proposed MAC protocol does not rely on specific physical layer realizations, and can work on legacy IEEE 802.11 equipment with slight software updates. Simulation results show that the proposed MAC outperforms IEEE 802.11 significantly, and that the dynamic parameter adjustment can effectively track the load variation in the network.

  • A Novel Spatial Power Combining Amplifier Based on Quasi-Yagi Antenna

    Haiyan JIN  Guangjun WEN  Rangning LV  Jian LI  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:3
      Page(s):
    416-419

    In this letter, a novel 4-way X-band spatial power divider/combiner has been developed using a modified quasi-Yagi antenna transition. The divider has an insertion loss of less than 0.5 dB and a power balance of +/-0.8 dB over a bandwidth of 3.5 GHz in the X-band. A power combiner amplifier using this circuit and four MMIC amplifiers has been demonstrated with 84% combining efficiency. The obtained results show that the modified quasi-Yagi antenna is a suitable element to develop a broadband spatial power combiner.

  • Relay Selection in Amplify-and-Forward Systems with Partial Channel Information

    Zhaoxi FANG  Xiaolin ZHOU  Yu ZHU  Zongxin WANG  

     
    PAPER-Broadcast Systems

      Vol:
    E93-B No:3
      Page(s):
    704-711

    Selection relaying is a promising technique for practical implementation of cooperative systems with multiple relay nodes. However, to select the best relay, global channel knowledge is required at the selecting entity, which may result in considerable signaling overhead. In this paper, we consider the relay selection problem in dual-hop amplify-and-forward (AF) communication systems with partial channel state information (CSI). Relay selection strategies aiming at minimizing either the outage probability or the bit error rate (BER) with quantized CSI available are presented. We also propose a target rate based quantizer to efficiently partition the SNR range for outage minimized relay selection, and a target BER based quantizer for BER minimized relay selection. Simulation results show that near optimal performance is achievable with a few bits feedback to the selecting entity.

  • Global Asymptotic Stability of FAST TCP Network with Heterogeneous Feedback Delays

    Joon-Young CHOI  Kyungmo KOO  Jin Soo LEE  

     
    PAPER-Network

      Vol:
    E93-B No:3
      Page(s):
    571-580

    We consider a single-link multi-source network with FAST TCP sources. We adopt a continuous-time dynamic model for FAST TCP sources, and propose a static model to adequately describe the queuing delay dynamics at the link. The proposed model turns out to have a structure that reveals the time-varying network feedback delay, which allows us to analyze FAST TCP with due consideration of the time-varying network feedback delay. Based on the proposed model, we establish sufficient conditions for the boundedness of congestion window of each source and for the global asymptotic stability. The asymptotic stability condition shows that the stability property of each source is affected by all other sources sharing the link. Simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.

  • A Phase Noise Optimized 4 GHz Differential Colpitts VCO

    Hee-Tae AHN  Jinwook BURM  

     
    LETTER-Electronic Circuits

      Vol:
    E93-C No:3
      Page(s):
    420-422

    This letter presents the design and analysis of phase noise optimization of a 4-GHz differential Colpitts voltage-controlled-oscillator (VCO). A low phase noise is achieved by a Colpitts oscillator and a VCO bias optimization using an amplitude control method. The measured phase noise is -134.8 dBc/Hz at 1.25 MHz offset frequency from 4 GHz operating frequency. The VCO is implemented using 0.24 µm SiGe BiCMOS process with integrated copper inductors. The wide VCO frequency range covers both PCS and IMT bands and draws about 15.9 mA from a 2.7 V power supply.

  • A Time-Slicing Ring Oscillator for Capturing Time-Dependent Delay Degradation and Power Supply Voltage Fluctuation

    Takumi UEZONO  Kazuya MASU  Takashi SATO  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    324-331

    A time-slicing ring oscillator (TSRO) which captures time-dependent delay degradation due to periodic transient voltage drop on a power supply network is proposed. An impact of the supply voltage fluctuations, including voltage drop and overshoot, on logic circuit delay is evaluated as a change of oscillation frequency. The TSRO is designed using standard logic cells so that it can be placed almost anywhere in a digital circuit wherein supply voltage fluctuation is concerned. We also propose a new procedure for reconstructing supply voltage waveform. The procedure enables us to accurately monitor time-dependent, effective supply voltages. The -1 dB bandwidth of the TSRO is simulated to be 15.7 GHz, and measured time resolution is 131 ps. Measurement results of a test chip using 90-nm standard CMOS process successfully proved the feasibility of both delay degradation and effective supply voltage fluctuation measurements. Measurement of spatial voltage drop fluctuation is achieved.

  • A 0.9-V 12-bit 40-MSPS Pipeline ADC for Wireless Receivers

    Tomohiko ITO  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    395-401

    A 0.9-V 12-bit 40-MSPS pipeline ADC with I/Q amplifier sharing technique is presented for wireless receivers. To achieve high linearity even at 0.9-V supply, the clock signals to sampling switches are boosted over 0.9 V in conversion stages. The clock-boosting circuit for lifting these clocks is shared between I-ch ADC and Q-ch ADC, reducing the area penalty. Low supply voltage narrows the available output range of the operational amplifier. A pseudo-differential (PD) amplifier with two-gain-stage common-mode feedback (CMFB) is proposed in views of its wide output range and power efficiency. This ADC is fabricated in 90-nm CMOS technology. At 40 MS/s, the measured SNDR is 59.3 dB and the corresponding effective number of bits (ENOB) is 9.6. Until Nyquist frequency, the ENOB is kept over 9.3. The ADC dissipates 17.3 mW/ch, whose performances are suitable for ADCs for mobile wireless systems such as WLAN/WiMAX.

  • Noncoherent Maximum Likelihood Detection for Differential Spatial Multiplexing MIMO Systems

    Ziyan JIA  Katsunobu YOSHII  Shiro HANDA  Fumihito SASAMORI  Shinjiro OSHITA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:2
      Page(s):
    361-368

    In this paper, we propose a novel noncoherent maximum likelihood detection (NMLD) method for differential spatial multiplexing (SM) multiple-input multiple-output (MIMO) systems. Unlike the conventional maximum likelihood detection (MLD) method which needs the knowledge of channel state information (CSI) at the receiver, NMLD method has no need of CSI at either the transmitter or receiver. After repartitioning the observation block of multiple-symbol differential detection (MSDD) and following a decision feedback process, the decision metric of NMLD is derived by reforming that of MSDD. Since the maximum Doppler frequency and noise power are included in the derived decision metric, estimations of both maximum Doppler frequency and noise power are needed at the receiver for NMLD. A fast calculation algorithm (FCA) is applied to reduce the computational complexity of NMLD. The feasibility of the proposed NMLD is demonstrated by computer simulations in both slow and fast fading environments. Simulation results show that the proposed NMLD has good bit error rate (BER) performance, approaching that of the conventional coherent MLD with the extension of reference symbols interval. It is also proved that the BER performance is not sensitive to the estimation errors in maximum Doppler frequency and noise power.

  • An Instantaneous Frequency Estimator Based on the Symmetric Higher Order Differential Energy Operator

    Byeong-Gwan IEM  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:1
      Page(s):
    227-232

    A generalized formulation of the instantaneous frequency based on the symmetric higher order differential energy operator is proposed. The motivation for the formulation is that there is some frequency misalignment in time when the ordinary higher order differential energy operator is used for the instantaneous frequency estimator. The special cases of the generalized formulation are also presented. The proposed instantaneous frequency estimators are compared with existing methods in terms of error performance measured in the mean absolute error. In terms of the estimation error performance, the third order instantaneous frequency estimator with the symmetrical structure shows the best result under noise free condition. Under noisy situation, the fourth order instantaneous frequency estimator with the symmetrical structure produces the best results. Application examples are provided to show the usefulness of the estimator.

  • General Impossible Differential Attack on 7-Round AES

    Meiling ZHANG  Weiguo ZHANG  Jingmei LIU  Xinmei WANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:1
      Page(s):
    327-330

    Impossible differential attack (IDA) uses impossible differential characteristics extracted from enough plaintext pairs to retrieve subkeys of the first and the last several rounds of AES. In this paper, a general IDA on 7-round AES is proposed. Such attack takes the number of all-zero columns of the 7th and the 6th round as parameters (α,β). And a trade-off relation between the number of plaintexts and times of encryptions in the process of the attack is derived, which makes only some values of (α,β) allowed in the attack for different key length.

  • Multiple-Symbol Differential Detection for Unitary Space-Time-Frequency Coding

    Ziyan JIA  Shiro HANDA  Fumihito SASAMORI  Shinjiro OSHITA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    90-98

    In this paper, multiple-symbol differential detection (MSDD) is applied to the differential unitary space-time-frequency coding (DUSTFC) scheme over frequency selective fading multiple-input multiple-output (MIMO) channels. The motivation of applying MSDD is to compensate for the performance loss of conventional (two-symbol observation) differential detection comparing with coherent detection, by extending the observation interval and considering the fading autocorrelations. Since the differential coding of DUSTFC can be performed in time or frequency domain, both the time-domain and frequency-domain MSDD are investigated. After calculating the frequency-domain fading autocorrelation, the decision metrics of MSDD considering appropriate fading autocorrelations are derived in time and frequency domain respectively. Bit error rate (BER) performances of the two kinds of MSDD are analyzed by computer simulations. Simulation results demonstrate that a considerable performance gain can be got by applying MSDD in both cases, and the transmit diversity gain can also be enhanced by applying MSDD. So that it is proved that full advantage of transmit diversity with DUSTFC can be taken by applying MSDD.

  • Security Analysis of 7-Round MISTY1 against Higher Order Differential Attacks

    Yukiyasu TSUNOO  Teruo SAITO  Maki SHIGERI  Takeshi KAWABATA  

     
    PAPER-Cryptanalysis

      Vol:
    E93-A No:1
      Page(s):
    144-152

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper shows that higher order differential attacks can be successful against 7-round versions of MISTY1 with FL functions. The attack on 7-round MISTY1 can recover a partial subkey with a data complexity of 254.1 and a computational complexity of 2120.8, which signifies the first successful attack on 7-round MISTY1 with no limitation such as a weak key. This paper also evaluates the complexity of this higher order differential attack on MISTY1 in which the key schedule is replaced by a pseudorandom function. It is shown that resistance to the higher order differential attack is not substantially improved even in 7-round MISTY1 in which the key schedule is replaced by a pseudorandom function.

  • A Digital Differential Transmitter with Pseudo-LVDS Output Driver and Digital Mismatch Calibration

    Jun-Hyun BAE  Sang-Hune PARK  Jae-Yoon SIM  Hong-June PARK  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E93-C No:1
      Page(s):
    132-135

    A digital 3 Gbps 0.2 V differential transmitter is proposed using a voltage-mode pseudo-LVDS output driver. The delay mismatch between two pre-drivers is digitally calibrated by a modified digital DLL with the duty cycle correction. The height and width of eye opening are improved by 103% and 46%, respectively. The power consumption is 11.4 mW at 1.2 V with 0.18 µm process.

  • Reduction of Test Data Volume and Improvement of Diagnosability Using Hybrid Compression

    Anis UZZAMAN  Brion KELLER  Brian FOUTZ  Sandeep BHATIA  Thomas BARTENSTEIN  Masayuki ARAI  Kazuhiko IWASAKI  

     
    PAPER

      Vol:
    E93-D No:1
      Page(s):
    17-23

    This paper describes a simple means to enable direct diagnosis by bypassing MISRs on a small set of tests (MISR-bypass test mode) while achieving ultimate output compression using MISRs for the majority of tests (MISR-enabled test mode.) By combining two compression schemes, XOR and MISRs in the same device, it becomes possible to have high compression and still support compression mode volume diagnostics. In our experiment, the MISR-bypass test was first executed and at 10% of the total test set the MISR-enabled test was performed. The results show that compared with MISR+XOR-based compression the proposed technique provides better volume diagnosis with slightly small (0.71 X to 0.97 X) compaction ratio. The scan cycles are about the same as the MISR-enabled mode. A possible application to partial good chips is also shown.

  • CMOS Nth-Switchable-Root Circuit

    Kuo-Jen LIN  Chih-Jen CHENG  

     
    LETTER-Electronic Circuits

      Vol:
    E93-C No:1
      Page(s):
    145-147

    A CMOS current-mode nth-switchable-root circuit composed of a compact logarithm circuit, a divide-by-n circuit, and a compact exponential circuit is proposed. The n can be selected from 5 values by three switches. Simulation results indicate that the compact nth-switchable-root circuit has a wide input-current range for relative errors less than 3%, low power dissipations below 630 µW, and high bandwidth over 330 MHz.

581-600hit(1376hit)