The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

24021-24040hit(30728hit)

  • The Optimal Sectionalized Trellises for the Generalized Version of Viterbi Algorithm of Linear Block Codes and Its Application to Reed-Muller Codes

    Yuansheng TANG  Toru FUJIWARA  Tadao KASAMI  

     
    PAPER-Coding Theory

      Vol:
    E83-A No:11
      Page(s):
    2329-2340

    An algorithm for finding the optimal sectionalization for sectionalized trellises with respect to distinct optimality criterions was presented by Lafourcade and Vardy. In this paper, for linear block codes, we give a direct method for finding the optimal sectionalization when the optimality criterion is chosen as the total number |E| of the edges, the expansion index |E|-|V|+1, or the quantity 2|E|-|V|+1, only using the dimensions of the past and future sub-codes. A more concrete method for determining the optimal sectionalization is given for the Reed-Muller codes with the natural lexicographic coordinate ordering.

  • Performance Evaluation on Change Time of Dynamic Workflow Changes

    Shingo YAMAGUCHI  Qi-Wei GE  Minoru TANAKA  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2177-2187

    A workflow is a flow of work carried out in parallel and in series by people. In order to improve efficiency, it is required to change the current workflow dynamically. Since dynamic change of workflows may probably make the series of work inconsistent, it is necessary to find out consistent change of workflow. As consistent ways, three types of dynamic changes: flush, abort, and synthetic cut-over (SCO), have been proposed. However, the concrete analysis and evaluation have not been done. To do the performance evaluation for the dynamic workflow changes, comparison of the times (called change time) cost in the individual change and the methods how to obtain such times become ever important. In this paper, we first give a definition of change time and then propose the computation methods individually for each change type. Finally, we do experiments to evaluate the performance of three changes by doing the comparison of the change times.

  • An Efficient Algorithm for Exploring State Spaces of Petri Nets with Large Capacities

    Kunihiko HIRAISHI  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2188-2195

    Generating state spaces is one of important and general methods in the analysis of Petri nets. There are two reasons why state spaces of Petri nets become so large. One is concurrent occurring of transitions, and the other is periodic occurring of firing sequences. This paper focuses on the second problem, and proposes a new algorithm for exploring state spaces of finite capacity Petri nets with large capacities. In the proposed algorithm, the state space is represented in the form of a tree such that a set of markings generated by periodic occurrences of firing sequences is associated with each node, and it is much smaller than the reachability graph.

  • Propositional Temporal Linear Logic and Its Application to Concurrent Systems

    Takaharu HIRAI  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2219-2227

    In computer science, concepts of resource such as data consumption and of time such as execution time are very important. Logical systems which can treat them have been applied in that field. Linear logic has been called a resource conscious logic. The expressive power is enough to describe a dynamic change in process environments. However, linear logic is not enough to treat a dynamic change in environments with the passage of time since it does not include a concept of time directly. A typical example is the relation between linear logic and Petri nets. It is well known that the reachability problem for Petri nets is equivalent to the provability for the corresponding sequent of linear logic. But linear logic cannot naturally represent timed Petri nets which are extensions of ordinary Petri nets with respect to time concept. So we extend linear logic with respect to time concept in order to introduce a resource-conscious and time-dependent logical system, that is, temporal linear logic. This system has some temporal operators "" which means a resource usable only once at the next time, "" which means a resource usable only once at anytime, and a modal storage operator "!" which means a resource usable any times at anytime. We can show that the reachability problem for timed Petri nets is equivalent to the provability for the corresponding sequent of temporal linear logic. In this paper, we also represent the description of synchronous communication model by temporal linear logic. The expressive power of temporal linear logic will be applicable to various fields of computer science.

  • Experimental Evaluations on Array Antenna Configuration of Adaptive Antenna Array Diversity Receiver in W-CDMA Reverse Link

    Taisuke IHARA  Shinya TANAKA  Atsushi HARADA  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2120-2128

    This paper investigates the influence of the number of antennas, the angle difference between the direction of arrival (DOA) of the desired signal and those of interfering signals, and the antenna arrangement on the BER performance of the coherent adaptive antenna array diversity (CAAAD) receiver in the wideband DS-CDMA (W-CDMA) reverse link. Experiments assuming high-rate interfering users were conducted in a radio anechoic room using a three-sectored antenna with a 120-degree beam (maximum number of antennas was six). The experimental results showed that the degree to which the interference was suppressed from high-rate users of the CAAAD receiver was significantly increased by increasing the number of antennas, especially when the number of interfering users was larger than degree of freedom of the CAAAD. It was also verified that although the BER performance of the CAAAD receiver significantly improved compared to a single sectored antenna, the improvement remarkably decreased when the DOA difference between the desired signal and interfering signals was within approximately 10-15 degrees irrespective of the number of antennas. Finally, we show that the BER performance difference between the linear and conformal arrangements was small when using the three-sectored antenna.

  • Path Search Performance and Its Parameter Optimization of Pilot Symbol-Assisted Coherent Rake Receiver for W-CDMA Mobile Radio

    Satoru FUKUMOTO  Koichi OKAWA  Kenichi HIGUCHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2110-2119

    In DS-CDMA (including W-CDMA), a received signal can be resolved into multiple paths to be Rake combined. An important design problem of the Rake receiver is how to accurately search the paths with a sufficiently large signal-to-interference plus background noise power ratio (SIR). This paper investigates the performance of a coherent Rake receiver using pilot symbol-assisted channel estimation with fast transmit power control, and thereby optimizes three key parameters: the total averaging period, Tavg, consisting of a combination of coherent summation and power summation; each period of the summations for measuring the average power delay profile; and path-selection threshold M from the generated power delay profile. We used a path search algorithm, which searches the paths that have M times greater average signal power than the interference plus background noise power measured in the average power delay profile generated using time-multiplexed pilot symbols. It was clarified by both simulation and laboratory experiments that when M = 4, Tavg = 50-100 msec, and the number of slots for coherent accumulation R = 2, the required average transmit Eb/N0 for obtaining the average BER of 10-3 is almost minimized with and without antenna diversity for both ITU-R Vehicular-B and average equal power L-path delay profile model, in which each path suffered independent Rayleigh fading. The paper also shows that based on the field experiments, the path search algorithm with optimized path-selection parameters is robust against actual dynamic changes in the power delay profile shape.

  • Direct-Detection Optical Synchronous CDMA Systems with Interference Canceller Using Group Information Codes

    Hiroshi SAWAGASHIRA  Katsuhiro KAMAKURA  Tomoaki OHTSUKI  Iwao SASASE  

     
    LETTER

      Vol:
    E83-A No:11
      Page(s):
    2138-2142

    We propose a new interference cancellation technique using reference signals for optical synchronous code-division multiple-access (CDMA) systems. In the proposed system, we use the signature code sequences composed of the group information codes and the modified prime code sequences. The group information codes are added in the forefront of the signature code sequences to estimate the amount of the multiple access interference (MAI). The proposed cancellation scheme can be realized with the simpler structure than the conventional canceller using the time division reference signal, because it can reduce the number of optical correlators from P to two where P is the prime number. We analyze the performance of the proposed system with considering the effects of the MAI, avalanche photodiode (APD) noise, and thermal noise. We show that the proposed canceller has better bit error probability than the conventional canceller.

  • Timing Estimation of CDMA Communication Based on MVDR Beamforming Technique

    Wei-Chiang WU  Jiang-Whai DAI  

     
    LETTER

      Vol:
    E83-A No:11
      Page(s):
    2147-2151

    A new timing estimation algorithm for asynchronous DS/CDMA multiuser communication system is proposed in this paper. The algorithm is based on the Minimum Variance Distortionless Response (MVDR) beamforming technique that minimizes the beamformer's output power with the constraint that only the signal with exact timing is distortionlessly passed. Exploiting the characteristics that the MVDR beamformer's output power is severely degraded according to erroneous timing estimation, we develop an efficient algorithm to estimate each user's timing by scanning the beamformer's output power variation. Compared to the maximum a posteriori (MAP) or maximum likelihood (ML) based multiuser timing estimator, the complexity is extensively reduced by separating the multi-dimensional optimization problem into several one-dimensional optimization problems. Furthermore, the algorithm is computationally feasible than the subspace-based timing estimator since no eigendecomposition (EVD) is required. Moreover, the proposed algorithm is near-far resistant since the MVDR beamformer is inherently energy independent to the interferers.

  • A Java Library for Implementing Distributed Active Object Systems

    Katsumi MARUYAMA  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2253-2263

    Most distributed systems are based on either the C/S (Client/Server) model or the P-to-P (Peer to Peer) model. In C/S based distributed systems, a client invokes a server and waits for the server reply. Because of this sequential nature, C/S based distributed systems can be implemented by the RPC (Remote Procedure Call) scheme. Most tools for developing distributed objects are based on the RPC scheme. Whereas, in P-to-P based distributed systems, each distributed objects work concurrently, by exchanging asynchronous messages, without waiting for the receiver's action. To implement these P-to-P distributed systems, the RPC scheme is not powerful enough, and the active object model using asynchronous messages is suitable. This paper explains the pure Java library CAPE for developing P-to-P based distributed active object systems.

  • Mathematical Introduction of Dynamic Behavior of an Idio-Type Network of Immune Reactions

    Hirohumi HIRAYAMA  Yoshimitsu OKITA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E83-A No:11
      Page(s):
    2357-2369

    We described short time span idiotype immune network reactions by rigorous mathematical equations. For each idiotype, we described the temporal changes in concentration of (1) single bound antibody, one of its two Fab arms has bound to the complemental receptor site on the B cell. (2) double bound antibody, both of its two Fab arms have bound to the complemental receptor sites on the B cell and (3) an immune complex which is a product of reaction among the antibodies. Stimulation and secretion processes of an antibody in the idiotype network were described by non linear differential equations characterized by the magnitude of cross-linking of the complemental antibody and B cell receptor. The affinity between the mutually complemental antibody and receptor was described by an weighted affinity matrix. The activating process was expressed by an exponential function with threshold. The rate constant for the linkage of the second Fab arm of an antibody was induced from the molecular diffusion process that was modified by the Coulomb repulsive force. By using reported experimental data, we integrated 60 non linear differential equations for the idiotype immune network to obtain the temporal behavior of concentrations of the species in hour span. The concentrations of the idiotype antibody and immune complex changed synchronously. The influence of a change in one rate constant extended to all the members of the idiotype network. The concentrations of the single bound antibody, double bound antibody and immune complex oscillated as functions of the concentration of the free antibody particularly at its low concentration. By comparing to the reported experimental data, the present computational approach seems to realize biological immune network reactions.

  • Advanced Sequential Control Based on an Autonomous Decentralized System for Attaining Highly Productive Systems

    Takeiki AIZONO  Tohru KIKUNO  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2236-2244

    A new method of sequential control has been developed in order to increase the productivity and flexibility of production systems. This advanced sequential control (ASC) method is proposed for sequential control systems based on the autonomous decentralized system (ADS) architecture. The ADS defines the system software and message formats and makes it easy to expand the number of devices and software modules. The ASC method increases productivity because it minimizes the processing and adjustment times of production lines by adjusting the starting times of production processes automatically. Experimental evaluation results of the ASC method showed that it increases the productivity of production systems. It is also applied to an actual production system and the results are reported.

  • Superlinear Conjugate Gradient Method with Adaptable Step Length and Constant Momentum Term

    Peter GECZY  Shiro USUI  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E83-A No:11
      Page(s):
    2320-2328

    First order line seach optimization techniques gained essential practical importance over second order optimization techniques due to their computational simplicity and low memory requirements. The computational excess of second order methods becomes unbearable for large optimization tasks. The only applicable optimization techniques in such cases are variations of first order approaches. This article presents one such variation of first order line search optimization technique. The presented algorithm has substantially simplified a line search subproblem into a single step calculation of the appropriate value of step length. This remarkably simplifies the implementation and computational complexity of the line search subproblem and yet does not harm the stability of the method. The algorithm is theoretically proven convergent, with superlinear convergence rates, and exactly classified within the formerly proposed classification framework for first order optimization. Performance of the proposed algorithm is practically evaluated on five data sets and compared to the relevant standard first order optimization technique. The results indicate superior performance of the presented algorithm over the standard first order method.

  • Characteristic of Bit Sequences Applicable to Constant Amplitude Orthogonal Multicode Systems

    Tadahiro WADA  

     
    LETTER

      Vol:
    E83-A No:11
      Page(s):
    2160-2164

    In this letter, the constant amplitude transmission for orthogonal multicode systems is discussed. In order to obtain the high power efficiency, we require the high power amplifier which has non-linear characteristic. The nonlinear distortion, however, may occur because of the multicode signals having large amplitude fluctuations. If we can achieve the constant amplitude transmission, the nonlinear distortion can be neglected. In this letter, I investigate the property of the information bit streams that can achieve the constant amplitude transmission and show that the bent sequences can achieve the constant amplitude transmission.

  • Design of Reconfigurable Lightpaths in IP over WDM Networks

    Hiroaki HARAI  Fumito KUBOTA  Hidenori NAKAZATO  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2234-2244

    The forwarding speed of IP routers must grow to accommodate the skyrocketing amount of traffic on the Internet. MPLS, which relies on the high processing power of lower layers, is a solution and it is under developing. On the other hand, a WDM network has been expected as a high-speed network, but it is also called a stupid network because of lacking its traffic granularity. In order to bridge between these two layers, an IP over WDM network by a concept of MPLS has been proposed. This network has a potential to effectively use large transmission capacity provided by WDM technology. In this paper, we design IP over WDM networks that reconfigure IP routing and lightpaths each day or month. We formulate a problem that maximizes the network throughput based on integer linear programming. Through numerical examples, we show that the increase of the network throughput in IP over WDM networks is larger than that of IP networks. We also show the area where this method is applicable to the reconfigurable network.

  • An ARMA Prefiltering Approach to Adaptive Equalization

    Tetsuya SHIMAMURA  Tomoyuki TAKADA  Jouji SUZUKI  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:10
      Page(s):
    2035-2039

    In this paper, we propose an adaptive IIR equalizer based on prefiltering techniques. The proposed equalizer has a cascade structure of an ARMA prefilter and an adaptive FIR equalizer. The ARMA prefilter is designed based on the transfer function estimated by the gradient-type instrumental variable algorithm. Simulation results are shown to confirm the performance of the proposed adaptive IIR equalizer.

  • Maximum Likelihood Successive State Splitting Algorithm for Tied-Mixture HMnet

    Alexandre GIRARDI  Harald SINGER  Kiyohiro SHIKANO  Satoshi NAKAMURA  

     
    PAPER-Speech and Hearing

      Vol:
    E83-D No:10
      Page(s):
    1890-1897

    This paper shows how a divisive state clustering algorithm that generates acoustic Hidden Markov models (HMM) can benefit from a tied-mixture representation of the probability density function (pdf) of a state and increase the recognition performance. Popular decision tree based clustering algorithms, like for example the Successive State Splitting algorithm (SSS) make use of a simplification when clustering data. They represent a state using a single Gaussian pdf. We show that this approximation of the true pdf by a single Gaussian is too coarse, for example a single Gaussian cannot represent the differences in the symmetric parts of the pdf's of the new hypothetical states generated when evaluating the state split gain (which will determine the state split). The use of more sophisticated representations would lead to intractable computational problems that we solve by using a tied-mixture pdf representation. Additionally, we constrain the codebook to be immutable during the split. Between state splits, this constraint is relaxed and the codebook is updated. In this paper, we thus propose an extension to the SSS algorithm, the so-called Tied-mixture Successive State Splitting algorithm (TM-SSS). TM-SSS shows up to about 31% error reduction in comparison with Maximum-Likelihood Successive State Split algorithm (ML-SSS) for a word recognition experiment.

  • Fault-Tolerant and Self-Stabilizing Protocols Using an Unreliable Failure Detector

    Hiroyoshi MATSUI  Michiko INOUE  Toshimitsu MASUZAWA  Hideo FUJIWARA  

     
    PAPER-Algorithms

      Vol:
    E83-D No:10
      Page(s):
    1831-1840

    We investigate possibility of fault-tolerant and self-stabilizing protocols (ftss protocols) using an unreliable failure detector. Our main contribution is (1) to newly introduce k-accuracy of an unreliable failure detector, (2) to show that k-accuracy of a failure detector is necessary for any ftss k-group consensus protocol, and (3) to present three ftss k-group consensus protocols using a k-accurate and weakly complete failure detector under the read/write daemon on complete networks and on (n-k+1)-connected networks, and under the central daemon on complete networks.

  • The Use of High Level Architecture in Car Traffic Simulations

    Atsuo OZAKI  Masakazu FURUICHI  Nobuo NISHI  Etsuji KURODA  

     
    PAPER-Software Systems

      Vol:
    E83-D No:10
      Page(s):
    1851-1859

    Although a number of car-traffic simulators have been developed for various purposes, none of the existing simulators enhance the simulation accuracy using sensor data or allow the system structure to re-configure the system structure depending on the application. Our goal was to develop a highly accurate, highly modular, flexible, and scalable micro-model car-traffic simulation system. The HLA (High Level Architecture) was applied to every system module as a standard interface between each module. This allows an efficient means for evaluating and validating a variety of micro-model simulation schemes. Our ongoing projects consist of running several identical simulations concurrently, with different parameter sets. By sending the results of these simulations to a manager module, which analyzes both the parameter sets and the simulated results, the manager module can evaluate the best-simulated results and determine the next action by comparing these results with the sensor data. In this system, the sensor data or the statistical data on the flow of traffic, obtained by monitoring real roads, is used to improve the simulation accuracy. Future systems are being planned to employ real time sensor data, where the input of the data occurs at almost real time speed. In this paper, we discuss the design of a HLA-based car-traffic simulation system and the construction of a sensor-data fusion algorithm. We also discuss our preliminary evaluation of the results obtained with this system. The results show that the proposed fusion algorithm can adjust the simulation accuracy to the logged sensor data within a difference of 5% (minimum 1.5%) in a specific time period. We also found that simulations with 500 different parameter sets can be executed within 5 minutes using 8 simulator modules.

  • Energy Loss Mechanisms in AC-PDP Discharges

    Markus H. KLEIN  Rob J. M. M. SNIJKERS  Gerjan J. M. HAGELAAR  

     
    PAPER

      Vol:
    E83-C No:10
      Page(s):
    1602-1607

    Low luminous efficacy is one of the major drawbacks of PDPs, with the discharge being the predominant limiting factor. Numeric simulations granting deeper insight in the core processes of the discharge are presented and the key parameters influencing the plasma efficiency are examined.

  • Image Vector Quantization Using Classified Binary-Tree-Structured Self-Organizing Feature Maps

    Jyh-Shan CHANG  Tzi-Dar CHIUEH  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:10
      Page(s):
    1898-1907

    With the continuing growth of the World Wide Web (WWW) services over the Internet, the demands for rapid image transmission over a network link of limited bandwidth and economical image storage of a large image database are increasing rapidly. In this paper, a classified binary-tree-structured Self-Organizing Feature Map neural network is proposed to design image vector codebooks for quantizing images. Simulations show that the algorithm not only produces codebooks with lower distortion than the well-known CVQ algorithm but also can minimize the edge degradation. Because the adjacent codewords in the proposed algorithm are updated concurrently, the codewords in the obtained codebooks tend to be ordered according to their mutual similarity which means more compression can be achieved with this algorithm. It should also be noticed that the obtained codebook is particularly well suited for progressive image transmission because it always forms a binary tree in the input space.

24021-24040hit(30728hit)