The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

24841-24860hit(30728hit)

  • Decorrelating Detector for Multi-Processing Gain CDMA Systems

    Hiroyuki HIRAIWA  Masaaki KATAYAMA  Takaya YAMAZATO  Akira OGAWA  

     
    LETTER

      Vol:
    E82-A No:12
      Page(s):
    2774-2777

    The design of a liner decorrelating detector for multi-processing gain code-division multiple-access (MPG-CDMA) systems is proposed, and its performance is discussed. As the result, the performance improvement by this detector is confirmed. Also, it is found that that the degrees of the noise enhancement depend on the processing gains of the signals.

  • Probability Model and Its Application on the Interaction of Nano-Spaced Slider/Disk Interface

    Wei HUA  Bo LIU  Gang SHENG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2139-2147

    The effect of surface roughness is crucial for contact recording and proximity recording. In this paper a probability model is developed for investigation of the influence of surface roughness on flying performance and the contact force of the slider. Simulations are conducted for both the contact recording slider and the proximity recording slider, and the results are well coordinated with the reported experimental results and the self-conducted experimental results. Studies are further extended to the characterization of the roughness of the air bearing surface and the disk surface that may support head/disk spacing between 5 nm and 15 nm.

  • Digital Delay-Lock Loop with Delta-Sigma Modulation for Power-Line Spread Spectrum Communications

    Satoru HISHIDA  Hisato FUJISAKA  Teruo MIYASHITA  Chikara SATO  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2735-2742

    This paper describes a digital delay-lock Loop (DLL) to which delta-sigma (Δ Σ) modulation technique is applied in order to reduce circuit elements. The DLL is evaluated in both transient and steady-state behavior by theoretical analysis, computer simulations and circuit experiments. Not deteriorated by the internally generated Δ Σ-modulation noise, the DLL shows good tracking performance in transient response and steady-state RMS jitter of phase error against additive white Gaussian noise. Using the proposed DLL most parts of receiving circuits are realized by digital integrated circuits. After realizing the circuit, power-line communication system with spread spectrum is possibly expected in a small size with low cost.

  • Experimental Characterization of the Feedback Induced Noise in Self-Pulsing Lasers

    Minoru YAMADA  Yasuyuki ISHIKAWA  Shunsuke YAMAMURA  Mitsuharu KIDU  Atsushi KANAMORI  Youichi AOKI  

     
    PAPER-Quantum Electronics

      Vol:
    E82-C No:12
      Page(s):
    2241-2247

    Generating conditions of the optical feedback noise in self-pulsing lasers were experimentally examined. The noise charcteristics were determined by changing the operating power, the feedback distance and the feedback ratio for several types of self-pulsing lasers. The idea of the effective modulation index was introduced to evaluate the generating conditions in an uniform manner based on the mode competition theory. Validity of the idea was experimentally confirmed for generation of noise.

  • Multi-Threaded Design for a Software Distributed Shared Memory Systems

    Jyh-Chang UENG  Ce-Kuen SHIEH  Su-Cheong MAC  An-Chow LAI  Tyng-Yue LIANG  

     
    PAPER-Sofware System

      Vol:
    E82-D No:12
      Page(s):
    1512-1523

    This paper describes the design and implementation of a multi-threaded Distributed Shared Memory (DSM) system, called Cohesion, which provides high programming flexibility and latency masking, and supports load balancing. Cohesion offers a parallel programming environment which is very similar to that on a multiprocessors system. Threads could be created recursively in this environment, and users are not required to handle the locations of the threads. Instead of supporting a shared variable model, Cohesion provides a global shared address space among all nodes in the system. The space is further divided into three regions, i. e. , release, conventional, and object-based memory, each is applied with different consistency protocol. In this paper, the design issues in an ordinary thread system, such as thread management, load balancing, and synchronization, have been reconsidered with the memory management provided by the DSM system. Several real applications have been used to evaluate the performance of the system. The results show that multi-threading usually has better performance than single-threading because the network latency can be masked by overlapping communication and computation. However, the gain depends on program behavior and the number of threads executed on each node in the system.

  • Thermal Stability Study for Anisotropic and Isotropic Hard Disk Media

    Lea Peng TAN  Jian Ping WANG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2171-2175

    Thermal stability of anisotropic and isotropic Co alloy thin-film media is investigated. The orientation ratio of CoCrTa(Pt)/Cr media was controlled by the mechanical texture of the NiP/Al substrates. Bulk magnetic properties, delta M curves and time decay of magnetization in the circumferential and radial directions were measured. The maximum magnetic viscosity coefficient calculated from the time decay of magnetization in the circumferential direction was higher than that in the radial direction for a mechanically textured sample, while it was similar in both directions for a non-textured sample. The magnetic viscosity coefficient in the circumferential direction is smaller than that in the radial direction when the reverse field is in the range of the demagnetization field for thin-film recording media. This implies that an anisotropic sample (namely, a sample with a high orientation ratio) will be more thermally stable when it is not exposed to a large external magnetic field.

  • Induced Slider Vibration over Various LZT Media at Small Disk-Slider Clearance --A Challenge to 0.5 µinch Glide Testing

    Seng Ghee TAN  Thomas LIEW  Teck Ee LOH  Teck Seng LOW  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2155-2164

    Both frequency- and time-domain analyses of glide signals from a PZT glide-slider flying over a laser zone-textured (LZT) thin film disk medium were used to determine the slider vibration at a small disk-slider clearance. Slider vibration was found to be particularly dependent on the uniformly placed laser bump and the effects due to the air-bearing stiffness over the LZT medium. We found that a high density of small, pointed laser bumps (10X) has a more distinct impact on airflow than large, jagged-rim craterlike laser bumps (1X) on the slider. We therefore investigated the effect of laser bump density on the slider vibration, and found that marginally higher laser bump density (3X versus 2X) results in higher slider vibration. While resonant vibration has been a major glide problem, the effects of laser bump density have also recently become important in the face of ultralow glide height, 0.5 µ" (12 nm). Its influence can be clearly observed when the disk-slider clearance becomes very small. At such an ultrasmall disk-slider clearance, even minimal slider vibration can be detrimental to the head-disk interface. Taking into account the various contributions of slider vibration and considering possible damage to the head-disk interface, it is clear that the optimization of laser bump design should go beyond just the glide height and coefficient of stiction. It should take into account the effects of laser bump height, density and spatial distribution on vibration-induced flying height variation while maintaining a low glide height and coefficient of stiction. An ideal LZT medium should therefore have low bump height to enable low glide height, i. e. , 0.5 µ" (12 nm), but specific bump shapes and sufficient density to achieve low stiction. Laser bump density should, however, be controlled to moderate its effect on slider vibration and possibly disk-slider collision (297 words).

  • Transition of Magnetization Direction in AS-MO Disks

    Junji HIROKANE  Yoshiteru MURAKAMI  Akira TAKAHASHI  Shigeo TERASHIMA  

     
    INVITED PAPER

      Vol:
    E82-C No:12
      Page(s):
    2117-2124

    A standard of Advanced Storage Magneto Optical (AS-MO) having a 6 Gbyte capacity in a 120 mm-diameter single side disk was established by using a magnetically induced superresolution readout method. Transition from in-plane to perpendicular magnetization for exchange-coupled readout layer (GdFeCo) and in-plane magnetization mask layer (GdFe) of the AS-MO disk has been investigated using the noncontinuous model. The readout resolution was sensitive to the thickness of the readout layer. To evaluate readout characteristics of AS-MO disks, the simulation using micro magnetics model was performed and the readout layers were designed. The readout characteristics of the AS-MO disk is improved by making the readout layer thinner.

  • Experimental Study of Slider-Disk Interaction in a Nanometer Spaced Head-Disk Interface

    Bo LIU  Yao-Long ZHU  Ying-Hui LI  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2148-2154

    A head-disk spacing tester that includes the effect of lubricant will be necessary if the slider-disk interaction is to be considered. The interaction and interaction induced spacing variation can be quantitatively characterized by optical method and by replacing the functional disk media with a glass disk covered with a carbon layer and a lubricant layer of the same materials and the same layer thickness as the functional disk media. This paper reports a tester configuration based on that concept. Experimental investigations into the nanometer spaced head-disk interface with such a setup are presented also. Results indicate that the lubricant plays an important role in slider-disk interaction and the vibration of the slider-disk interface. Two types of interface vibration were noticed: contact vibration and bouncing vibration. For the bouncing case, the natural frequency of air-bearing and its fold frequencies will be excited and air-bearing plays more important role in the determination of the slider vibration, comparing with the contact-vibration case.

  • Structure and Mechanics Study of Slider Design for 5-15 nm Head-Disk Spacing

    Gang SHENG  Bo LIU  Wei HUA  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2125-2131

    An integrated slider-suspension system was designed and prototyped. The structure of this system has a full flying air-bearing surface in the leading part with a contamination-resistant feature, and it accommodates a slider with a 5-15 nm head-disk spacing at the trailing part. Performance analysis and simulation were conducted to validate the high performances of the design. Two key issues, the rigid motions (vibrations) and the elastic motions of the slider, were investigated systematically. For the rigid motions, it was found that the natural frequencies of the slider system are dependent on the disk contact stiffness and that the slider vibrations under excitation exhibit various nonlinear resonance. For the elastic motions, the average elastic response of the slider body under the random interaction of the interface was derived and characterized.

  • A Maximal Ratio Combining Frequency Diversity ARQ Scheme for High-Speed OFDM Systems

    Tomoaki KUMAGAI  Tetsu SAKATA  Masahiro MORIKURA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1914-1922

    This paper proposes a new maximal ratio combining (MRC) frequency diversity automatic-repeat-request (ARQ) scheme suitable for high-speed orthogonal frequency division multiplexing (OFDM) systems that is based on the conventional packet combining ARQ scheme. The proposed scheme regularly changes the previously prepared subcarrier assignment pattern at each retransmission according to the number of retransmissions. This scheme sharply reduces the number of ARQ retransmissions and much improves the throughput performance in slow fading environments by virtue of the frequency diversity effect while it requires no complex adaptive operations. Computer simulation results show that the proposed scheme reduces the required number of retransmissions to about 3 at the accumulative correct packet reception rate (ACPRR) of 0.9.

  • Development of Evaluation Method of Gas Viscous Friction Force Acting on Head/Disk Interface

    Koji TANIGUCHI  Masaru NAKAKITA  Yoshihiro UENO  Kaoru MATSUOKA  Koichi SHINOHARA  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2132-2138

    A method of evaluating the gas viscous friction force acting on head/disk interface has been developed. In the past, the effect of the gas viscous friction force has been almost negligible, due to its small value compared with the contact friction force. Recently the gas viscous friction force has tended to increase with the decrease in spacing and the increase in relative speed between the slider and the disk, therefore it is becoming necessary to consider its effect on motor load or slider posture. Few experimental studies of the gas viscous friction force, however, have been performed. In this study, the measurement of the gas viscous friction force has been realized by developing a sensitive friction force sensor. Furthermore a method of evaluating the gas viscous and contact friction forces separately has been also established.

  • An Edge-Preserving Image Coding System with Vector Quantization

    Chou-Chen WANG  Chin-Hsing CHEN  Chaur-Heh HSIEH  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1572-1581

    Image coding with vector quantization (VQ) reveals several defects which include edge degradation and high encoding complexity. This paper presents an edge-preserving coding system based on VQ to overcome these defects. A signal processing unit first classifies image blocks into low-activity or high-activity class. A high-activity block is then decomposed into a smoothing factor, a bit-plane and a smoother (lower variance) block. These outputs can be more efficiently encoded by VQ with lower distortion. A set of visual patterns is used to encode the bit-planes by binary vector quantization. We also develop a modified search-order coding to further reduce the redundancy of quantization indexes. Simulation results show that the proposed algorithm achieves much better perceptual quality with higher compression ratio and significant lower computational complexity, as compared to the direct VQ.

  • An Adaptive List-Output Viterbi Equalizer with Fast Compare-Select Operation

    Kazuo TANADA  Hiroshi KUBO  Atsushi IWASE  Makoto MIYAKE  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2004-2011

    This paper proposes an adaptive list-output Viterbi equalizer (LVE) with fast compare-select operation, in order to achieve a good trade-off between bit error rate (BER) performance and processing speed. An LVE, which keeps several survivors for each state, has good BER performance in the presence of wide-spread intersymbol interference. However, the LVE suffers from large processing delay due to its sorting-based compare-select operation. The proposed adaptive LVE greatly reduces its processing delay, because it simplifies compare-select operation. In addition, computer simulation shows that the proposed LVE causes only slight BER performance degradation due to its simplification of compare-select operation. Thus, the proposed LVE achieves better BER performance than decision-feedback sequence estimation (DFSE) without an increase in processing delay.

  • Simulation Analysis for Ring Head Recording on Single-Layer Perpendicular Recording Media

    Naoki HONDA  Takanori KIYA  Kazuhiro OUCHI  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2184-2190

    Ring head recording on single-layer perpendicular recording media was studied by a simple simulation analysis based on a loop tracing method considering only the perpendicular component. Although the assumed model was primitive, the simulation results qualitatively well explained the experimental results such as a decrease in output at high recording currents and its relaxation upon using a smaller gap-length head. The simulation results revealed that achievable recorded magnetization is, in general, much smaller than the saturation value due to a broad distribution of the ring head field, but a medium with a steeper slope in the perpendicular M-H loop could improve the recording performance. This was confirmed experimentally for the medium with a steeper loop slope, though the medium exhibited a larger medium noise at high densities. It was suggested that the development of perpendicular recording for higher output and lower noise could be performed for both media with a small and steep loop slope. The former should be improved by means of the recording head while the latter by the media. A large improvement is expected for both cases.

  • Precise Write-Time Compensation for Nonlinear Transition Shift in Magnetic Tape Recording Using a d=1 RLL Code

    Toshihiro UEHARA  Keigo MAJIMA  Shoichiro OGAWA  Junji NUMAZAWA  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2234-2240

    We propose precise write-time compensation for nonlinear transition shift in magnetic tape recording using d=1 runlength-limited (RLL) code as a channel modulation. In this write-time compensation approach, the write current transitions having a transition within 3 bits earlier are shifted so as to minimize the transition shift of the readback signal. First, we precisely measured the nonlinear transition shift using a VCR. Next, based on this measurement, we simulated the effects of the write-time compensation, verifying them in recording experiments with a VCR. The results show that when the optimum read equalization is applied to the readback signal, this write-time compensation approach increases the eye height and eye width while improving the byte error rate by about two orders.

  • A Novel Channel Estimation Scheme Employing Adaptive Selection of Frequency-Domain Filters for OFDM Systems

    Takeshi ONIZAWA  Masato MIZOGUCHI  Masahiro MORIKURA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1923-1931

    This paper proposes a simple adaptive channel estimation scheme for orthogonal frequency division multiplexing (OFDM) in order to realize high-rate wireless local area networks (LANs). The proposed estimator consists of simple frequency-domain FIR filters, which are adaptively selected according to the difference vector between adjacent subcarriers and channel amplitude of the subcarrier. No precomputation or matrix signal processing is required in the derivation of these characteristics. Computer simulations show that the packet error rate performance of the proposed scheme is superior to that of the least-squares scheme by 1.1 dB in terms of required Eb/N0 at PER=0.1 in AWGN channels. They also show, for the same criterion, a 0.7 dB improvement in a frequency selective fading channel with delay spread values of 100 ns.

  • Semi-Automatic Tool for Aligning a Parameterized CAD Model to Stereo Image Pairs

    Chu-Song CHEN  Kuan-Chung HUNG  Yi-Ping HUNG  Lin-Lin CHEN  Chiou-Shann FUH  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1582-1588

    Fully automatic reconstruction of 3D models from images is well-known to be a difficult problem. For many applications, a limited amount of human assistance is allowed and can greatly reduce the complexity of the 3D reconstruction problem. In this paper, we present an easy-to-use method for aligning a parameterized 3D CAD model to images taken from different views. The shape parameters of the 3D CAD model can be recovered accurately. Our work is composed of two parts. In the first part, we developed an interactive tool which allows the user to associate the features in the CAD model to the features in the 2D images. This interactive tool is designed to achieve efficiency and accuracy. In the second part, 3D information extracted from different stereo views are integrated together by using an optimization technique to obtain accurate shape parameters. Some experimental results have been shown to demonstrate the accuracy and usefulness of the recovered CAD model.

  • A New Vector Error Measurement Scheme for Transmit Modulation Accuracy of OFDM Systems

    Satoru HORI  Tomoaki KUMAGAI  Tetsu SAKATA  Masahiro MORIKURA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1906-1913

    This paper proposes a new vector error measurement scheme for orthogonal frequency division multiplexing (OFDM) systems that is used to define transmit modulation accuracy. The transmit modulation accuracy is defined to guarantee inter-operability among wireless terminals. In OFDM systems, the transmit modulation accuracy measured by the conventional vector error measurement scheme can not guarantee inter-operability due to the effect of phase noise. To overcome this problem, the proposed vector error measurement scheme utilizes pilot signals in multiple OFDM symbols to compensate the phase rotation caused by the phase noise. Computer simulation results show that the vector error measured by the proposed scheme uniquely corresponds to the C/N degradation in packet error rate even if phase noise exists in the OFDM signals. This means that the proposed vector error measurement scheme makes it possible to define the transmit modulation accuracy and so guarantee inter-operability among wireless terminals.

  • Solving Multi-Objective Transportation Problem by Spanning Tree-Based Genetic Algorithm

    Mitsuo GEN  Yinzhen LI  Kenichi IDA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E82-A No:12
      Page(s):
    2802-2810

    In this paper, we present a new approach which is spanning tree-based genetic algorithm for solving a multi-objective transportation problem. The transportation problem as a special type of the network optimization problems has the special data structure in solution characterized as a transportation graph. In encoding transportation problem, we introduce one of node encodings based on a spanning tree which is adopted as it is capable of equally and uniquely representing all possible basic solutions. The crossover and mutation were designed based on this encoding. Also we designed the criterion that chromosome has always feasibility converted to a transportation tree. In the evolutionary process, the mixed strategy with (µ+λ)-selection and roulette wheel selection is used. Numerical experiments show the effectiveness and efficiency of the proposed algorithm.

24841-24860hit(30728hit)