The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

401-420hit(30728hit)

  • FPGA-based Garbling Accelerator with Parallel Pipeline Processing

    Rin OISHI  Junichiro KADOMOTO  Hidetsugu IRIE  Shuichi SAKAI  

     
    PAPER

      Pubricized:
    2023/08/02
      Vol:
    E106-D No:12
      Page(s):
    1988-1996

    As more and more programs handle personal information, the demand for secure handling of data is increasing. The protocol that satisfies this demand is called Secure function evaluation (SFE) and has attracted much attention from a privacy protection perspective. In two-party SFE, two mutually untrustworthy parties compute an arbitrary function on their respective secret inputs without disclosing any information other than the output of the function. For example, it is possible to execute a program while protecting private information, such as genomic information. The garbled circuit (GC) — a method of program obfuscation in which the program is divided into gates and the output is calculated using a symmetric key cipher for each gate — is an efficient method for this purpose. However, GC is computationally expensive and has a significant overhead even with an accelerator. We focus on hardware acceleration because of the nature of GC, which is limited to certain types of calculations, such as encryption and XOR. In this paper, we propose an architecture that accelerates garbling by running multiple garbling engines simultaneously based on the latest FPGA-based GC accelerator. In this architecture, managers are introduced to perform multiple rows of pipeline processing simultaneously. We also propose an optimized implementation of RAM for this FPGA accelerator. As a result, it achieves an average performance improvement of 26% in garbling the same set of programs, compared to the state-of-the-art (SOTA) garbling accelerator.

  • MITA: Multi-Input Adaptive Activation Function for Accurate Binary Neural Network Hardware

    Peiqi ZHANG  Shinya TAKAMAEDA-YAMAZAKI  

     
    PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-D No:12
      Page(s):
    2006-2014

    Binary Neural Networks (BNN) have binarized neuron and connection values so that their accelerators can be realized by extremely efficient hardware. However, there is a significant accuracy gap between BNNs and networks with wider bit-width. Conventional BNNs binarize feature maps by static globally-unified thresholds, which makes the produced bipolar image lose local details. This paper proposes a multi-input activation function to enable adaptive thresholding for binarizing feature maps: (a) At the algorithm level, instead of operating each input pixel independently, adaptive thresholding dynamically changes the threshold according to surrounding pixels of the target pixel. When optimizing weights, adaptive thresholding is equivalent to an accompanied depth-wise convolution between normal convolution and binarization. Accompanied weights in the depth-wise filters are ternarized and optimized end-to-end. (b) At the hardware level, adaptive thresholding is realized through a multi-input activation function, which is compatible with common accelerator architectures. Compact activation hardware with only one extra accumulator is devised. By equipping the proposed method on FPGA, 4.1% accuracy improvement is achieved on the original BNN with only 1.1% extra LUT resource. Compared with State-of-the-art methods, the proposed idea further increases network accuracy by 0.8% on the Cifar-10 dataset and 0.4% on the ImageNet dataset.

  • I Never Trust My University for This! Investigating Student PII Leakage at Vietnamese Universities

    Ha DAO  Quoc-Huy VO  Tien-Huy PHAM  Kensuke FUKUDA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/09/06
      Vol:
    E106-D No:12
      Page(s):
    2048-2056

    Universities collect and process a massive amount of Personal Identifiable Information (PII) at registration and throughout interactions with individuals. However, student PII can be exposed to the public by uploading documents along with university notice without consent and awareness, which could put individuals at risk of a variety of different scams, such as identity theft, fraud, or phishing. In this paper, we perform an in-depth analysis of student PII leakage at Vietnamese universities. To the best of our knowledge, we are the first to conduct a comprehensive study on student PII leakage in higher educational institutions. We find that 52.8% of Vietnamese universities leak student PII, including one or more types of personal data, in documents on their websites. It is important to note that the compromised PII includes sensitive types of data, student medical record and religion. Also, student PII leakage is not a new phenomenon and it has happened year after year since 2005. Finally, we present a study with 23 Vietnamese university employees who have worked on student PII to get a deeper understanding of this situation and envisage concrete solutions. The results are entirely surprising: the employees are highly aware of the concept of student PII. However, student PII leakage still happens due to their working habits or the lack of a management system and regulation. Therefore, the Vietnamese university should take a more active stand to protect student data in this situation.

  • Associating Colors with Mental States for Computer-Aided Drawing Therapy

    Satoshi MAEDA  Tadahiko KIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/09/14
      Vol:
    E106-D No:12
      Page(s):
    2057-2068

    The aim of a computer-aided drawing therapy system in this work is to associate drawings which a client makes with the client's mental state in quantitative terms. A case study is conducted on experimental data which contain both pastel drawings and mental state scores obtained from the same client in a psychotherapy program. To perform such association through colors, we translate a drawing to a color feature by measuring its representative colors as primary color rates. A primary color rate of a color is defined from a psychological primary color in a way such that it shows a rate of emotional properties of the psychological primary color which is supposed to affect the color. To obtain several informative colors as representative ones of a drawing, we define two kinds of color: approximate colors extracted by color reduction, and area-averaged colors calculated from the approximate colors. A color analysis method for extracting representative colors from each drawing in a drawing sequence under the same conditions is presented. To estimate how closely a color feature is associated with a concurrent mental state, we propose a method of utilizing machine-learning classification. A practical way of building a classification model through training and validation on a very small dataset is presented. The classification accuracy reached by the model is considered as the degree of association of the color feature with the mental state scores given in the dataset. Experiments were carried out on given clinical data. Several kinds of color feature were compared in terms of the association with the same mental state. As a result, we found out a good color feature with the highest degree of association. Also, primary color rates proved more effective in representing colors in psychological terms than RGB components. The experimentals provide evidence that colors can be associated quantitatively with states of human mind.

  • Shift Quality Classifier Using Deep Neural Networks on Small Data with Dropout and Semi-Supervised Learning

    Takefumi KAWAKAMI  Takanori IDE  Kunihito HOKI  Masakazu MURAMATSU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2023/09/05
      Vol:
    E106-D No:12
      Page(s):
    2078-2084

    In this paper, we apply two methods in machine learning, dropout and semi-supervised learning, to a recently proposed method called CSQ-SDL which uses deep neural networks for evaluating shift quality from time-series measurement data. When developing a new Automatic Transmission (AT), calibration takes place where many parameters of the AT are adjusted to realize pleasant driving experience in all situations that occur on all roads around the world. Calibration requires an expert to visually assess the shift quality from the time-series measurement data of the experiments each time the parameters are changed, which is iterative and time-consuming. The CSQ-SDL was developed to shorten time consumed by the visual assessment, and its effectiveness depends on acquiring a sufficient number of data points. In practice, however, data amounts are often insufficient. The methods proposed here can handle such cases. For the cases wherein only a small number of labeled data points is available, we propose a method that uses dropout. For those cases wherein the number of labeled data points is small but the number of unlabeled data is sufficient, we propose a method that uses semi-supervised learning. Experiments show that while the former gives moderate improvement, the latter offers a significant performance improvement.

  • Hierarchical Detailed Intermediate Supervision for Image-to-Image Translation

    Jianbo WANG  Haozhi HUANG  Li SHEN  Xuan WANG  Toshihiko YAMASAKI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/09/14
      Vol:
    E106-D No:12
      Page(s):
    2085-2096

    The image-to-image translation aims to learn a mapping between the source and target domains. For improving visual quality, the majority of previous works adopt multi-stage techniques to refine coarse results in a progressive manner. In this work, we present a novel approach for generating plausible details by only introducing a group of intermediate supervisions without cascading multiple stages. Specifically, we propose a Laplacian Pyramid Transformation Generative Adversarial Network (LapTransGAN) to simultaneously transform components in different frequencies from the source domain to the target domain within only one stage. Hierarchical perceptual and gradient penalization are utilized for learning consistent semantic structures and details at each pyramid level. The proposed model is evaluated based on various metrics, including the similarity in feature maps, reconstruction quality, segmentation accuracy, similarity in details, and qualitative appearances. Our experiments show that LapTransGAN can achieve a much better quantitative performance than both the supervised pix2pix model and the unsupervised CycleGAN model. Comprehensive ablation experiments are conducted to study the contribution of each component.

  • Single-Line Text Detection in Multi-Line Text with Narrow Spacing for Line-Based Character Recognition

    Chee Siang LEOW  Hideaki YAJIMA  Tomoki KITAGAWA  Hiromitsu NISHIZAKI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/08/31
      Vol:
    E106-D No:12
      Page(s):
    2097-2106

    Text detection is a crucial pre-processing step in optical character recognition (OCR) for the accurate recognition of text, including both fonts and handwritten characters, in documents. While current deep learning-based text detection tools can detect text regions with high accuracy, they often treat multiple lines of text as a single region. To perform line-based character recognition, it is necessary to divide the text into individual lines, which requires a line detection technique. This paper focuses on the development of a new approach to single-line detection in OCR that is based on the existing Character Region Awareness For Text detection (CRAFT) model and incorporates a deep neural network specialized in line segmentation. However, this new method may still detect multiple lines as a single text region when multi-line text with narrow spacing is present. To address this, we also introduce a post-processing algorithm to detect single text regions using the output of the single-line segmentation. Our proposed method successfully detects single lines, even in multi-line text with narrow line spacing, and hence improves the accuracy of OCR.

  • Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks

    SenSong HE  Ying QIU  

     
    LETTER-Information Network

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    2107-2111

    Recent studies have shown that concurrent transmission with precise time synchronization enables reliable and efficient flooding for wireless networks. However, most of them require all nodes in the network to forward packets a fixed number of times to reach the destination, which leads to unnecessary energy consumption in both one-to-one and many-to-one communication scenarios. In this letter, we propose G1M address this issue by reducing redundant packet forwarding in concurrent transmissions. The evaluation of G1M shows that compared with LWB, the average energy consumption of one-to-one and many-to-one transmission is reduced by 37.89% and 25%, respectively.

  • User Verification Using Evoked EEG by Invisible Visual Stimulation

    Atikur RAHMAN  Nozomu KINJO  Isao NAKANISHI  

     
    PAPER-Biometrics

      Pubricized:
    2023/06/19
      Vol:
    E106-A No:12
      Page(s):
    1569-1576

    Person authentication using biometric information has recently become popular among researchers. User management based on biometrics is more reliable than that using conventional methods. To secure private information, it is necessary to build continuous authentication-based user management systems. Brain waves are suitable biometric modalities for continuous authentication. This study is based on biometric authentication using brain waves evoked by invisible visual stimuli. Invisible visual stimulation is considered over visual stimulation to overcome the obstacles faced by a user when using a system. Invisible stimuli are confirmed by changing the intensity of the image and presenting high-speed stimulation. To ensure invisibility, stimuli of different intensities were tested, and the stimuli with an intensity of 5% was confirmed to be invisible. To improve the verification performance, a continuous wavelet transform was introduced over the Fourier transform because it extracts both time and frequency information from the brain wave. The scalogram obtained by the wavelet transform was used as an individual feature and for synchronizing the template and test data. Furthermore, to improve the synchronization performance, the waveband was split based on the power distribution of the scalogram. A performance evaluation using 20 subjects showed an equal error rate of 3.8%.

  • Comments on Quasi-Linear Support Vector Machine for Nonlinear Classification

    Sei-ichiro KAMATA  Tsunenori MINE  

     
    WRITTEN DISCUSSION-General Fundamentals and Boundaries

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1444-1445

    In 2014, the above paper entitled ‘Quasi-Linear Support Vector Machine for Nonlinear Classification’ was published by Zhou, et al. [1]. They proposed a quasi-linear kernel function for support vector machine (SVM). However, in this letter, we point out that this proposed kernel function is a part of multiple kernel functions generated by well-known multiple kernel learning which is proposed by Bach, et al. [2] in 2004. Since then, there have been a lot of related papers on multiple kernel learning with several applications [3]. This letter verifies that the main kernel function proposed by Zhou, et al. [1] can be derived using multiple kernel learning algorithms [3]. In the kernel construction, Zhou, et al. [1] used Gaussian kernels, but the multiple kernel learning had already discussed the locality of additive Gaussian kernels or other kernels in the framework [4], [5]. Especially additive Gaussian or other kernels were discussed in tutorial at major international conference ECCV2012 [6]. The authors did not discuss these matters.

  • Gradient Descent Direction Random Walk MIMO Detection Using Intermediate Search Point

    Naoki ITO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1192-1199

    In this paper, multi-input multi-output (MIMO) signal detection with random walk along a gradient descent direction using an intermediate search point is presented. As a low complexity MIMO signal detection schemes, a gradient descent algorithm with Metropolis-Hastings (MH) methods has been proposed. Random walk along a gradient descent direction speeds up the MH based search using the gradient of a least-squares cost function. However, the gradient vector may be discarded through QAM constellation quantization in some cases. For further performance improvement, this paper proposes an improved search scheme in which the gradient vector is stored for the next search iteration to generate an intermediate search point. The performance of the proposed scheme improves with higher order modulation symbols as compared with that of a conventional scheme. Numerical results obtained through computer simulation show that a bit error rate (BER) performance improves by 5dB at a BER of 10-3 for 64QAM symbols in a 16×16 MIMO system.

  • An In-Vehicle Auditory Signal Evaluation Platform based on a Driving Simulator

    Fuma SAWA  Yoshinori KAMIZONO  Wataru KOBAYASHI  Ittetsu TANIGUCHI  Hiroki NISHIKAWA  Takao ONOYE  

     
    PAPER-Acoustics

      Pubricized:
    2023/05/22
      Vol:
    E106-A No:11
      Page(s):
    1368-1375

    Advanced driver-assistance systems (ADAS) generally play an important role to support safe drive by detecting potential risk factors beforehand and informing the driver of them. However, if too many services in ADAS rely on visual-based technologies, the driver becomes increasingly burdened and exhausted especially on their eyes. The drivers should be back out of monitoring tasks other than significantly important ones in order to alleviate the burden of the driver as long as possible. In-vehicle auditory signals to assist the safe drive have been appealing as another approach to altering visual suggestions in recent years. In this paper, we developed an in-vehicle auditory signals evaluation platform in an existing driving simulator. In addition, using in-vehicle auditory signals, we have demonstrated that our developed platform has highlighted the possibility to partially switch from only visual-based tasks to mixing with auditory-based ones for alleviating the burden on drivers.

  • Low-Light Image Enhancement Method Using a Modified Gamma Transform and Gamma Filtering-Based Histogram Specification for Convex Combination Coefficients

    Mashiho MUKAIDA  Yoshiaki UEDA  Noriaki SUETAKE  

     
    PAPER-Image

      Pubricized:
    2023/04/21
      Vol:
    E106-A No:11
      Page(s):
    1385-1394

    Recently, a lot of low-light image enhancement methods have been proposed. However, these methods have some problems such as causing fine details lost in bright regions and/or unnatural color tones. In this paper, we propose a new low-light image enhancement method to cope with these problems. In the proposed method, a pixel is represented by a convex combination of white, black, and pure color. Then, an equi-hue plane in RGB color space is represented as a triangle whose vertices correspond to white, black, and pure color. The visibility of low-light image is improved by applying a modified gamma transform to the combination coefficients on an equi-hue plane in RGB color space. The contrast of the image is enhanced by the histogram specification method using the histogram smoothed by a filter with a kernel determined based on a gamma distribution. In the experiments, the effectiveness of the proposed method is verified by the comparison with the state-of-the-art low-light image enhancement methods.

  • Deep Unrolling of Non-Linear Diffusion with Extended Morphological Laplacian

    Gouki OKADA  Makoto NAKASHIZUKA  

     
    PAPER-Image

      Pubricized:
    2023/07/21
      Vol:
    E106-A No:11
      Page(s):
    1395-1405

    This paper presents a deep network based on unrolling the diffusion process with the morphological Laplacian. The diffusion process is an iterative algorithm that can solve the diffusion equation and represents time evolution with Laplacian. The diffusion process is applied to smoothing of images and has been extended with non-linear operators for various image processing tasks. In this study, we introduce the morphological Laplacian to the basic diffusion process and unwrap to deep networks. The morphological filters are non-linear operators with parameters that are referred to as structuring elements. The discrete Laplacian can be approximated with the morphological filters without multiplications. Owing to the non-linearity of the morphological filter with trainable structuring elements, the training uses error back propagation and the network of the morphology can be adapted to specific image processing applications. We introduce two extensions of the morphological Laplacian for deep networks. Since the morphological filters are realized with addition, max, and min, the error caused by the limited bit-length is not amplified. Consequently, the morphological parts of the network are implemented in unsigned 8-bit integer with single instruction multiple data set (SIMD) to achieve fast computation on small devices. We applied the proposed network to image completion and Gaussian denoising. The results and computational time are compared with other denoising algorithm and deep networks.

  • U-Net Architecture for Ancient Handwritten Chinese Character Detection in Han Dynasty Wooden Slips

    Hojun SHIMOYAMA  Soh YOSHIDA  Takao FUJITA  Mitsuji MUNEYASU  

     
    PAPER-Image

      Pubricized:
    2023/05/15
      Vol:
    E106-A No:11
      Page(s):
    1406-1415

    Recent character detectors have been modeled using deep neural networks and have achieved high performance in various tasks, such as text detection in natural scenes and character detection in historical documents. However, existing methods cannot achieve high detection accuracy for wooden slips because of their multi-scale character sizes and aspect ratios, high character density, and close character-to-character distance. In this study, we propose a new U-Net-based character detection and localization framework that learns character regions and boundaries between characters. The proposed method enhances the learning performance of character regions by simultaneously learning the vertical and horizontal boundaries between characters. Furthermore, by adding simple and low-cost post-processing using the learned regions of character boundaries, it is possible to more accurately detect the location of a group of characters in a close neighborhood. In this study, we construct a wooden slip dataset. Experiments demonstrated that the proposed method outperformed existing character detection methods, including state-of-the-art character detection methods for historical documents.

  • A Method to Improve the Quality of Point-Light-Style Images Using Peripheral Difference Filters with Different Window Sizes

    Toru HIRAOKA  Kanya GOTO  

     
    LETTER-Computer Graphics

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1440-1443

    We propose a non-photorealistic rendering method for automatically generating point-light-style (PLS) images from photographic images using peripheral difference filters with different window sizes. The proposed method can express PLS patterns near the edges of photographic images as dots. To verify the effectiveness of the proposed method, experiments were conducted to visually confirm PLS images generated from various photographic images.

  • A SAT Approach to the Initial Mapping Problem in SWAP Gate Insertion for Commuting Gates

    Atsushi MATSUO  Shigeru YAMASHITA  Daniel J. EGGER  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1424-1431

    Most quantum circuits require SWAP gate insertion to run on quantum hardware with limited qubit connectivity. A promising SWAP gate insertion method for blocks of commuting two-qubit gates is a predetermined swap strategy which applies layers of SWAP gates simultaneously executable on the coupling map. A good initial mapping for the swap strategy reduces the number of required swap gates. However, even when a circuit consists of commuting gates, e.g., as in the Quantum Approximate Optimization Algorithm (QAOA) or trotterized simulations of Ising Hamiltonians, finding a good initial mapping is a hard problem. We present a SAT-based approach to find good initial mappings for circuits with commuting gates transpiled to the hardware with swap strategies. Our method achieves a 65% reduction in gate count for random three-regular graphs with 500 nodes. In addition, we present a heuristic approach that combines the SAT formulation with a clustering algorithm to reduce large problems to a manageable size. This approach reduces the number of swap layers by 25% compared to both a trivial and random initial mapping for a random three-regular graph with 1000 nodes. Good initial mappings will therefore enable the study of quantum algorithms, such as QAOA and Ising Hamiltonian simulation applied to sparse problems, on noisy quantum hardware with several hundreds of qubits.

  • Decomposition of P6-Free Chordal Bipartite Graphs

    Asahi TAKAOKA  

     
    LETTER-Graphs and Networks

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1436-1439

    Canonical decomposition for bipartite graphs, which was introduced by Fouquet, Giakoumakis, and Vanherpe (1999), is a decomposition scheme for bipartite graphs associated with modular decomposition. Weak-bisplit graphs are bipartite graphs totally decomposable (i.e., reducible to single vertices) by canonical decomposition. Canonical decomposition comprises series, parallel, and K+S decomposition. This paper studies a decomposition scheme comprising only parallel and K+S decomposition. We show that bipartite graphs totally decomposable by this decomposition are precisely P6-free chordal bipartite graphs. This characterization indicates that P6-free chordal bipartite graphs can be recognized in linear time using the recognition algorithm for weak-bisplit graphs presented by Giakoumakis and Vanherpe (2003).

  • Authors' Reply to the Comments by Kamata et al.

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    WRITTEN DISCUSSION

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1446-1449

    We thank Kamata et al. (2023) [1] for their interest in our work [2], and for providing an explanation of the quasi-linear kernel from a viewpoint of multiple kernel learning. In this letter, we first give a summary of the quasi-linear SVM. Then we provide a discussion on the novelty of quasi-linear kernels against multiple kernel learning. Finally, we explain the contributions of our work [2].

  • Evaluating Energy Consumption of Internet Services Open Access

    Leif Katsuo OXENLØWE  Quentin SAUDAN  Jasper RIEBESEHL  Mujtaba ZAHIDY  Smaranika SWAIN  

     
    INVITED PAPER

      Pubricized:
    2023/06/15
      Vol:
    E106-B No:11
      Page(s):
    1036-1043

    This paper summarizes recent reports on the internet's energy consumption and the internet's benefits on climate actions. It discusses energy-efficiency and the need for a common standard for evaluating the climate impact of future communication technologies and suggests a model that can be adapted to different internet applications such as streaming, online reading and downloading. The two main approaches today are based on how much data is transmitted or how much time the data is under way. The paper concludes that there is a need for a standardized method to estimate energy consumption and CO2 emission related to internet services. This standard should include a method for energy-optimizing future networks, where every Wh will be scrutinized.

401-420hit(30728hit)