The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

1241-1260hit(30728hit)

  • Balanced (Almost) Binary Sequence Pairs of Period Q ≡ 1(mod 4) with Optimal Autocorrelation and Cross-Correlation

    Xiuping PENG  Hongxiao LI  Hongbin LIN  

     
    LETTER-Coding Theory

      Pubricized:
    2021/11/22
      Vol:
    E105-A No:5
      Page(s):
    892-896

    In this letter, the almost binary sequence (sequence with a single zero element) is considered as a special class of binary sequence. Four new bounds on the cross-correlation of balanced (almost) binary sequences with period Q ≡ 1(mod 4) under the precondition of out-of-phase autocorrelation values {-1} or {1, -3} are firstly presented. Then, seven new pairs of balanced (almost) binary sequences of period Q with ideal or optimal autocorrelation values and meeting the lower cross-correlation bounds are proposed by using cyclotomic classes of order 4. These new bounds of (almost) binary sequences with period Q achieve smaller maximum out-of-phase autocorrelation values and cross-correlation values.

  • Bit-Parallel Systolic Architecture for AB and AB2 Multiplications over GF(2m)

    Kee-Won KIM  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/11/02
      Vol:
    E105-C No:5
      Page(s):
    203-206

    In this paper, we present a scheme to compute either AB or AB2 multiplications over GF(2m) and propose a bit-parallel systolic architecture based on the proposed algorithm. The AB multiplication algorithm is derived in the same form as the formula of AB2 multiplication algorithm, and an architecture that can perform AB multiplication by adding very little extra hardware to AB2 multiplier is designed. Therefore, the proposed architecture can be effectively applied to hardware constrained applications that cannot deploy AB2 multiplier and AB multiplier separately.

  • Analysis and Design of 6.78MHz Wireless Power Transfer System for Robot Arm Open Access

    Katsuki TOKANO  Wenqi ZHU  Tatsuki OSATO  Kien NGUYEN  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    494-503

    This paper presents a design method of a two-hop wireless power transfer (WPT) system for installing on a robot arm. The class-E inverter and the class-D rectifier are used on the transmission and receiving sides, respectively, in the proposed WPT system. Analytical equations for the proposed WPT system are derived as functions of the geometrical and physical parameters of the coils, such as the outer diameter and height of the coils, winding-wire diameter, and number of turns. Using the analytical equations, we can optimize the WPT system to obtain the design values with the theoretically highest power-delivery efficiency under the size limitation of the robot arm. The circuit experiments are in quantitative agreement with the theoretical predictions obtained from the analysis, indicating the validity of the analysis and design method. The experimental prototype achieved 83.6% power-delivery efficiency at 6.78MHz operating frequency and 39.3W output power.

  • Design and Optimization for Energy-Efficient Transmission Strategies with Full-Duplex Amplify-and-Forward Relaying

    Caixia CAI  Wenyang GAN  Han HAI  Fengde JIA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/28
      Vol:
    E105-B No:5
      Page(s):
    608-616

    In this paper, to improve communication system's energy-efficiency (EE), multi-case optimization of two new transmission strategies is investigated. Firstly, with amplify-and-forward relaying and full-duplex technique, two new transmission strategies are designed. The designed transmission strategies consider direct links and non-ideal transmission conditions. At the same time, detailed capacity and energy consumption analyses of the designed transmission strategies are given. In addition, EE optimization and analysis of the designed transmission strategies are studied. It is the first case of EE optimization and it is achieved by joint optimization of transmit time (TT) and transmit power (TP). Furthermore, the second and third cases of EE optimization with respectively optimizing TT and TP are given. Simulations reveal that the designed transmission strategies can effectively improve the communication system's EE.

  • Contextualized Language Generation on Visual-to-Language Storytelling

    Rizal Setya PERDANA  Yoshiteru ISHIDA  

     
    PAPER

      Pubricized:
    2022/01/17
      Vol:
    E105-D No:5
      Page(s):
    873-886

    This study presents a formulation for generating context-aware natural language by machine from visual representation. Given an image sequence input, the visual storytelling task (VST) aims to generate a coherent, object-focused, and contextualized sentence story. Previous works in this domain faced a problem in modeling an architecture that works in temporal multi-modal data, which led to a low-quality output, such as low lexical diversity, monotonous sentences, and inaccurate context. This study introduces a further improvement, that is, an end-to-end architecture, called cross-modal contextualize attention, optimized to extract visual-temporal features and generate a plausible story. Visual object and non-visual concept features are encoded from the convolutional feature map, and object detection features are joined with language features. Three scenarios are defined in decoding language generation by incorporating weights from a pre-trained language generation model. Extensive experiments are conducted to confirm that the proposed model outperforms other models in terms of automatic metrics and manual human evaluation.

  • SVM Based Intrusion Detection Method with Nonlinear Scaling and Feature Selection

    Fei ZHANG  Peining ZHEN  Dishan JING  Xiaotang TANG  Hai-Bao CHEN  Jie YAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/14
      Vol:
    E105-D No:5
      Page(s):
    1024-1038

    Intrusion is one of major security issues of internet with the rapid growth in smart and Internet of Thing (IoT) devices, and it becomes important to detect attacks and set out alarm in IoT systems. In this paper, the support vector machine (SVM) and principal component analysis (PCA) based method is used to detect attacks in smart IoT systems. SVM with nonlinear scheme is used for intrusion classification and PCA is adopted for feature selection on the training and testing datasets. Experiments on the NSL-KDD dataset show that the test accuracy of the proposed method can reach 82.2% with 16 features selected from PCA for binary-classification which is almost the same as the result obtained with all the 41 features; and the test accuracy can achieve 78.3% with 29 features selected from PCA for multi-classification while 79.6% without feature selection. The Denial of Service (DoS) attack detection accuracy of the proposed method can achieve 8.8% improvement compared with existing artificial neural network based method.

  • A Semantic-Based Dual Location Privacy-Preserving Approach

    Xudong YANG  Ling GAO  Yan LI  Jipeng XU  Jie ZHENG  Hai WANG  Quanli GAO  

     
    PAPER-Information Network

      Pubricized:
    2022/02/16
      Vol:
    E105-D No:5
      Page(s):
    982-995

    With the popularity and development of Location-Based Services (LBS), location privacy-preservation has become a hot research topic in recent years, especially research on k-anonymity. Although previous studies have done a lot of work on anonymity-based privacy protection, there are still several challenges far from being perfectly solved, such as the negative impact on the security of anonymity by the semantic information, which from anonymous locations and query content. To address these semantic challenges, we propose a dual privacy preservation scheme based on the architecture of multi-anonymizers in this paper. Different from existing approaches, our method enhanced location privacy by integrating location anonymity and the encrypted query. First, the query encryption method that combines improved shamir mechanism and multi-anonymizers is proposed to enhance query safety. Second, we design an anonymity method that enhances semantic location privacy through anonymous locations that satisfy personal semantic diversity and replace sensitive semantic locations. Finally, the experiment on the real dataset shows that our algorithms provide much better privacy and use than previous solutions.

  • Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing

    Shiyao DING  Donghui LIN  

     
    PAPER

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:5
      Page(s):
    936-945

    Distributed edge cloud computing is an important computation infrastructure for Internet of Things (IoT) and its task offloading problem has attracted much attention recently. Most existing work on task offloading in distributed edge cloud computing usually assumes that each self-interested user owns one edge server and chooses whether to execute its tasks locally or to offload the tasks to cloud servers. The goal of each edge server is to maximize its own interest like low delay cost, which corresponds to a non-cooperative setting. However, with the strong development of smart IoT communities such as smart hospital and smart factory, all edge and cloud servers can belong to one organization like a technology company. This corresponds to a cooperative setting where the goal of the organization is to maximize the team interest in the overall edge cloud computing system. In this paper, we consider a new problem called cooperative task offloading where all edge servers try to cooperate to make the entire edge cloud computing system achieve good performance such as low delay cost and low energy cost. However, this problem is hard to solve due to two issues: 1) each edge server status dynamically changes and task arrival is uncertain; 2) each edge server can observe only its own status, which makes it hard to optimize team interest as global information is unavailable. For solving these issues, we formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) which can well handle the dynamic features under partial observations. Then, we apply a multi-agent reinforcement learning algorithm called value decomposition network (VDN) and propose a VDN-based task offloading algorithm (VDN-TO) to solve the problem. Specifically, the motivation is that we use a team value function to evaluate the team interest, which is then divided into individual value functions for each edge server. Then, each edge server updates its individual value function in the direction that can maximize the team interest. Finally, we choose a part of a real dataset to evaluate our algorithm and the results show the effectiveness of our algorithm in a comparison with some other existing methods.

  • Error Rate Performance Analysis of M-ary Coherent FSO Communications with Spatial Diversity in Strong Atmospheric Turbulence

    Jinkyu KANG  Seongah JEONG  Hoojin LEE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/10/28
      Vol:
    E105-A No:5
      Page(s):
    897-900

    In this letter, we analyze the error rate performance of M-ary coherent free-space optical (FSO) communications under strong atmospheric turbulence. Specifically, we derive the exact error rates for M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) based on moment-generating function (MGF) with negative exponential distributed turbulence, where maximum ratio combining (MRC) receiver is adopted to mitigate the turbulence effects. Additionally, by evaluating the asymptotic error rate in high signal-to-noise ratio (SNR) regime, it is possible to effectively investigate and predict the error rate performance for various system configurations. The accuracy and the effectiveness of our theoretical analyses are verified via numerical results.

  • Fully Connected Imaging Network for Near-Field Synthetic Aperture Interferometric Radiometer

    Zhimin GUO  Jianfei CHEN  Sheng ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/09
      Vol:
    E105-D No:5
      Page(s):
    1120-1124

    Millimeter wave synthetic aperture interferometric radiometers (SAIR) are very powerful instruments, which can effectively realize high-precision imaging detection. However due to the existence of interference factor and complex near-field error, the imaging effect of near-field SAIR is usually not ideal. To achieve better imaging results, a new fully connected imaging network (FCIN) is proposed for near-field SAIR. In FCIN, the fully connected network is first used to reconstruct the image domain directly from the visibility function, and then the residual dense network is used for image denoising and enhancement. The simulation results show that the proposed FCIN method has high imaging accuracy and shorten imaging time.

  • Multi-Level Encrypted Transmission Scheme Using Hybrid Chaos and Linear Modulation Open Access

    Tomoki KAGA  Mamoru OKUMURA  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    638-647

    In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.

  • Simple Proof of the Lower Bound on the Average Distance from the Fermat-Weber Center of a Convex Body Open Access

    Xuehou TAN  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    853-857

    We show that for any convex body Q in the plane, the average distance from the Fermat-Weber center of Q to the points in Q is at least Δ(Q)/6, where Δ(Q) denotes the diameter of Q. Our proof is simple and straightforward, since it needs only elementary calculations. This simplifies a previously known proof that is based on Steiner symmetrizations.

  • Low-Complexity VBI-Based Channel Estimation for Massive MIMO Systems

    Chen JI  Shun WANG  Haijun FU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    600-607

    This paper proposes a low-complexity variational Bayesian inference (VBI)-based method for massive multiple-input multiple-output (MIMO) downlink channel estimation. The temporal correlation at the mobile user side is jointly exploited to enhance the channel estimation performance. The key to the success of the proposed method is the column-independent factorization imposed in the VBI framework. Since we separate the Bayesian inference for each column vector of signal-of-interest, the computational complexity of the proposed method is significantly reduced. Moreover, the temporal correlation is automatically uncoupled to facilitate the updating rule derivation for the temporal correlation itself. Simulation results illustrate the substantial performance improvement achieved by the proposed method.

  • Specification and Verification of Multitask Real-Time Systems Using the OTS/CafeOBJ Method

    Masaki NAKAMURA  Shuki HIGASHI  Kazutoshi SAKAKIBARA  Kazuhiro OGATA  

     
    PAPER

      Pubricized:
    2021/09/24
      Vol:
    E105-A No:5
      Page(s):
    823-832

    Because processes run concurrently in multitask systems, the size of the state space grows exponentially. Therefore, it is not straightforward to formally verify that such systems enjoy desired properties. Real-time constrains make the formal verification more challenging. In this paper, we propose the following to address the challenge: (1) a way to model multitask real-time systems as observational transition systems (OTSs), a kind of state transition systems, (2) a way to describe their specifications in CafeOBJ, an algebraic specification language, and (3) a way to verify that such systems enjoy desired properties based on such formal specifications by writing proof scores, proof plans, in CafeOBJ. As a case study, we model Fischer's protocol, a well-known real-time mutual exclusion protocol, as an OTS, describe its specification in CafeOBJ, and verify that the protocol enjoys the mutual exclusion property when an arbitrary number of processes participates in the protocol*.

  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.

  • Current Status and Issues of Traffic Light Recognition Technology in Autonomous Driving System Open Access

    Naoki SUGANUMA  Keisuke YONEDA  

     
    INVITED PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-A No:5
      Page(s):
    763-769

    Autonomous driving technology is currently attracting a lot of attention as a technology that will play a role in the next generation of mobility. For autonomous driving in urban areas, it is necessary to recognize various information. Especially, the recognition of traffic lights is important in crossing intersections. In this paper, traffic light recognition technology developed by the authors was evaluated using onboard sensor data during autonomous driving in the Tokyo waterfront area as an example of traffic light recognition technology. Based on the results, it was found that traffic lights could be recognized with an accuracy of approximately 99% to carry out the decision making for intersection approaching. However, from the evaluation results, it was also confirmed that traffic light recognition became difficult under situations involving occlusion by other object, background assimilation, nighttime conditions, and backlight by sunlight. It was also confirmed that these effects are mostly temporary, and do not significantly affect decision-making to enter intersections as a result of utilizing information from multiple traffic lights installed at an intersection. On the other hand, it is expected that recognition with current onboard cameras will become technically difficult during situations in which not all traffic lights are visually recognizable due to the effects of back or front light by sunlight when stopped at the stop line of an intersection. This paper summarizes these results and presents the necessity of appropriate traffic light installation on the assumption of recognition by onboard cameras.

  • Characterization and Construction of Generalized Bent Functions with Flexible Coefficients

    Zhiyao YANG  Pinhui KE  Zhixiong CHEN  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/10/29
      Vol:
    E105-A No:5
      Page(s):
    887-891

    In 2017, Tang et al. provided a complete characterization of generalized bent functions from ℤ2n to ℤq(q = 2m) in terms of their component functions (IEEE Trans. Inf. Theory. vol.63, no.7, pp.4668-4674). In this letter, for a general even q, we aim to provide some characterizations and more constructions of generalized bent functions with flexible coefficients. Firstly, we present some sufficient conditions for a generalized Boolean function with at most three terms to be gbent. Based on these results, we give a positive answer to a remaining question proposed by Hodžić in 2015. We also prove that the sufficient conditions are also necessary in some special cases. However, these sufficient conditions whether they are also necessary, in general, is left as an open problem. Secondly, from a uniform point of view, we provide a secondary construction of gbent function, which includes several known constructions as special cases.

  • Markov-Chain Analysis Model based Active Period Adaptation Scheme for IEEE 802.15.4 Network

    Ryota HORIUCHI  Kohei TOMITA  Nobuyoshi KOMURO  

     
    PAPER

      Pubricized:
    2021/10/22
      Vol:
    E105-A No:5
      Page(s):
    770-777

    Energy efficiency is one of the critical issues for Wireless Sensor Networks (WSN). IEEE 802.15.4 beacon-enabled MAC protocol achieves low energy consumption by having periodical inactive portions, where nodes run in low power. However, IEEE 802.15.4 beacon-enabled protocol cannot respond to dynamic changes in the number of sensor nodes and data rates in WSN because its duty cycle is fixed and immutable. In this paper, we propose a dynamic superframe duration adaptation scheme based on the Markov chain-based analysis methods for IEEE 802.15.4 beacon-enabled protocol. The proposed methods are flexible enough to accommodate changes in the number of sensor nodes and differences in data rates in WSNs while maintaining low latency and low energy consumption despite slight degradation in packet delivery ratio.

  • Nonnegative Matrix Factorization with Minimum Correlation and Volume Constrains

    Zhongqiang LUO  Chaofu JING  Chengjie LI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/11/22
      Vol:
    E105-A No:5
      Page(s):
    877-881

    Nonnegative Matrix Factorization (NMF) is a promising data-driven matrix decomposition method, and is becoming very active and attractive in machine learning and blind source separation areas. So far NMF algorithm has been widely used in diverse applications, including image processing, anti-collision for Radio Frequency Identification (RFID) systems and audio signal analysis, and so on. However the typical NMF algorithms cannot work well in underdetermined mixture, i.e., the number of observed signals is less than that of source signals. In practical applications, adding suitable constraints fused into NMF algorithm can achieve remarkable decomposition results. As a motivation, this paper proposes to add the minimum volume and minimum correlation constrains (MCV) to the NMF algorithm, which makes the new algorithm named MCV-NMF algorithm suitable for underdetermined scenarios where the source signals satisfy mutual independent assumption. Experimental simulation results validate that the MCV-NMF algorithm has a better performance improvement in solving RFID tag anti-collision problem than that of using the nearest typical NMF method.

  • Distributed Scheme for Unit Commitment Problem Using Constraint Programming and ADMM Open Access

    Yuta INOUE  Toshiyuki MIYAMOTO  

     
    INVITED PAPER

      Pubricized:
    2021/09/02
      Vol:
    E105-A No:5
      Page(s):
    788-798

    The unit commitment problem (UCP) is the problem of deciding up/down and generation-level patterns of energy production units. Due to the expansion of distributed energy resources and the liberalization of energy trading in recent years, solving the distributed UCP (DUCP) is attracting the attention of researchers. Once an up/down pattern is determined, the generation-level pattern can be decided distributively using the alternating direction method of multipliers (ADMM). However, ADMM does not guarantee convergence when deciding both up/down and generation-level patterns. In this paper, we propose a method to solve the DUCP using ADMM and constraint optimization programming. Numerical experiments show the efficacy of the proposed method.

1241-1260hit(30728hit)