The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] UPT(41hit)

1-20hit(41hit)

  • Comparative Performance Analysis of I/O Interfaces on Different NVMe SSDs in a High CPU Contention Scenario Open Access

    SeulA LEE  Jiwoong PARK  

     
    LETTER-Software System

      Pubricized:
    2024/03/18
      Vol:
    E107-D No:7
      Page(s):
    898-900

    This paper analyzes performance differences between interrupt-based and polling-based asynchronous I/O interfaces in high CPU contention scenarios. It examines how the choice of I/O Interface can differ depending on the performance of NVMe SSDs, particularly when using PCIe 3.0 and PCIe 4.0-based SSDs.

  • Protection Mechanism of Kernel Data Using Memory Protection Key

    Hiroki KUZUNO  Toshihiro YAMAUCHI  

     
    PAPER

      Pubricized:
    2023/06/30
      Vol:
    E106-D No:9
      Page(s):
    1326-1338

    Memory corruption can modify the kernel data of an operating system kernel through exploiting kernel vulnerabilities that allow privilege escalation and defeats security mechanisms. To prevent memory corruption, the several security mechanisms are proposed. Kernel address space layout randomization randomizes the virtual address layout of the kernel. The kernel control flow integrity verifies the order of invoking kernel codes. The additional kernel observer focuses on the unintended privilege modifications. However, illegal writing of kernel data is not prevented by these existing security mechanisms. Therefore, an adversary can achieve the privilege escalation and the defeat of security mechanisms. This study proposes a kernel data protection mechanism (KDPM), which is a novel security design that restricts the writing of specific kernel data. The KDPM adopts a memory protection key (MPK) to control the write restriction of kernel data. The KDPM with the MPK ensures that the writing of privileged information for user processes and the writing of kernel data related to the mandatory access control. These are dynamically restricted during the invocation of specific system calls and the execution of specific kernel codes. Further, the KDPM is implemented on the latest Linux with an MPK emulator. The evaluation results indicate the possibility of preventing the illegal writing of kernel data. The KDPM showed an acceptable performance cost, measured by the overhead, which was from 2.96% to 9.01% of system call invocations, whereas the performance load on the MPK operations was 22.1ns to 1347.9ns. Additionally, the KDPM requires 137 to 176 instructions for its implementations.

  • L5-TSPP: A Protocol for Disruption Tolerant Networking in Layer-5

    Hiroki WATANABE  Fumio TERAOKA  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-B No:2
      Page(s):
    215-227

    TCP/IP, the foundation of the current Internet, assumes a sufficiently low packet loss rate for links in communication path. On the other hand, for communication services such as mobile and wireless communications, communication link tends to be disruptive. In this paper, we propose Layer-5 temporally-spliced path protocol (L5-TSPP), which provides disruption-tolerance in the L5 temporally-spliced path (L5-TSP), as one of the communication paths provided by Layer-5 (L5-paths). We design and implement an API for using L5-paths (L5 API). The L5 API is designed and implemented to support not only POSIX systems but also non-POSIX systems. L5 API and L5-TSPP are implemented in the user space in Go language. The measurement results show that L5-TSP achieves lower and more stable connection establishment time and better end-to-end throughput in the presence of disruption than conventional communication paths.

  • Identification of Kernel Memory Corruption Using Kernel Memory Secret Observation Mechanism

    Hiroki KUZUNO  Toshihiro YAMAUCHI  

     
    PAPER-Network and System Security

      Pubricized:
    2020/03/04
      Vol:
    E103-D No:7
      Page(s):
    1462-1475

    Countermeasures against attacks targeting an operating system are highly effective in preventing security compromises caused by kernel vulnerability. An adversary uses such attacks to overwrite credential information, thereby overcoming security features through arbitrary program execution. CPU features such as Supervisor Mode Access Prevention, Supervisor Mode Execution Prevention and the No eXecute bit facilitate access permission control and data execution in virtual memory. Additionally, Linux reduces actual attacks through kernel vulnerability affects via several protection methods including Kernel Address Space Layout Randomization, Control Flow Integrity, and Kernel Page Table Isolation. Although the combination of these methods can mitigate attacks as kernel vulnerability relies on the interaction between the user and the kernel modes, kernel virtual memory corruption can still occur (e.g., the eBPF vulnerability allows malicious memory overwriting only in the kernel mode). We present the Kernel Memory Observer (KMO), which has a secret observation mechanism to monitor kernel virtual memory. KMO is an alternative design for virtual memory can detect illegal data manipulation/writing in the kernel virtual memory. KMO determines kernel virtual memory corruption, inspects system call arguments, and forcibly unmaps the direct mapping area. An evaluation of KMO reveals that it can detect kernel virtual memory corruption that contains the defeating security feature through actual kernel vulnerabilities. In addition, the results indicate that the system call overhead latency ranges from 0.002 µs to 8.246 µs, and the web application benchmark ranges from 39.70 µs to 390.52 µs for each HTTP access, whereas KMO reduces these overheads by using tag-based Translation Lookaside Buffers.

  • Systematic Detection of State Variable Corruptions in Discrete Event System Specification Based Simulation

    Hae Young LEE  Jin Myoung KIM  

     
    LETTER-Software System

      Pubricized:
    2020/04/17
      Vol:
    E103-D No:7
      Page(s):
    1769-1772

    In this letter, we propose a more secure modeling and simulation approach that can systematically detect state variable corruptions caused by buffer overflows in simulation models. Using our approach, developers may not consider secure coding practices related to the corruptions. We have implemented a prototype of the approach based on a modeling and simulation formalism and an open source simulator. Through optimization, the prototype could show better performance, compared to the original simulator, and detect state variable corruptions.

  • Predicting Uninterruptible Durations of Office Workers by Using Probabilistic Work Continuance Model

    Shota SHIRATORI  Yuichiro FUJIMOTO  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/01/10
      Vol:
    E103-D No:4
      Page(s):
    838-849

    In order not to disrupt a team member concentrating on his/her own task, the interrupter needs to wait for a proper time. In this research, we examined the feasibility of predicting prospective interruptible times of office workers who use PCs. An analysis of actual working data collected from 13 participants revealed the relationship between uninterruptible durations and four features, i.e. type of application software, rate of PC operation activity, activity ratio between keystrokes and mouse clicks, and switching frequency of application software. On the basis of these results, we developed a probabilistic work continuance model whose probability changes according to the four features. The leave-one-out cross-validation indicated positive correlations between the actual and the predicted durations. The medians of the actual and the predicted durations were 539 s and 519 s. The main contribution of this study is the demonstration of the feasibility to predict uninterruptible durations in an actual working scenario.

  • A Topology Control Strategy with Efficient Path for Predictable Delay-Tolerant Networks

    Dawei YAN  Cong LIU  Peng YOU  Shaowei YONG  Dongfang GUAN  Yu XING  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2183-2198

    In wireless networks, efficient topology improves the performance of network protocols. The previous research mainly focuses on how to construct a cost-efficient network structure from a static and connected topology. Due to lack of continuous connectivity in the underlying topology, most traditional topology control methods are not applicable to the delay or disruption tolerant networks (DTNs). In this paper, we consider the topology control problem in a predictable DTN where the dynamic topology is known a priori or can be predicted over time. First, this dynamic topology is modeled by a directed space-time graph that includes spatial and temporal information. Second, the topology control problem of the predictable DTN is formulated as building a sparse structure. For any pair devices, there is an efficient path connecting them to improve the efficiency of the generated structure. Then, a topology control strategy is proposed for this optimization problem by using a kth shortest paths algorithm. Finally, simulations are conducted on random networks and a real-world DTN tracing date. The results demonstrate that the proposed method can significantly improve the efficiency of the generated structure and reduce the total cost.

  • Analysis of Observation Behavior of Shared Interruptibility Information among Distributed Offices: Case Study in a University Laboratory

    Kentaro TAKASHIMA  Hitomi YOKOYAMA  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/06/17
      Vol:
    E102-D No:9
      Page(s):
    1808-1818

    Various systems that share remote co-worker's awareness information have been proposed for realizing efficient collaborative work among distributed offices. In this study, we implemented an interruptibility sharing system in a university laboratory and assessed the observation behavior for the displayed information. Observation behavior for each target member was detected using an eye tracker to discuss the usage and effect of the system in a quantitative manner, along with the considerations of workers' job positions and relationships. The results suggested that participants observed interruptibility information approximately once an hour while at their desks. Observations were frequent during break-times rather than when the participants wanted to communicate with others. The most frequently observed targets were the participants themselves. The participants gazed the laboratory members not only in a close work relationship but also in a weak relationship. Results suggested that sharing of interruptibility information assists worker's self-reflection and contributes to the establishment of horizontal connection in an organization including members in weak work relationship.

  • Multi-View 3D Ball Tracking with Abrupt Motion Adaptive System Model, Anti-Occlusion Observation and Spatial Density Based Recovery in Sports Analysis

    Xina CHENG  Norikazu IKOMA  Masaaki HONDA  Takeshi IKENAGA  

     
    PAPER-Vision

      Vol:
    E100-A No:5
      Page(s):
    1215-1225

    Significant challenges in ball tracking of sports analysis by computer vision technology are: 1) accuracy of estimated 3D ball trajectory under difficult conditions; 2) external forces added by players lead to irregular motions of the ball; 3) unpredictable situations in the real game, i.e. the ball occluded by players and other objects, complex background and changing lighting condition. With the goal of multi-view 3D ball tracking, this paper proposes an abrupt motion adaptive system model, an anti-occlusion observation model, and a spatial density-based automatic recovery based on particle filter. The system model combines two different system noises that cover the motion of the ball both in general situation and situation subject to abrupt motion caused by external force. Combination ratio of these two noises and number of particles are adaptive to the estimated motion by weight distribution of particles. The anti-occlusion observation model evaluates image feature of each camera and eliminates influence of the camera with less confidence. The spatial density, which is calculated based on 3D ball candidates filtered out by spatial homographic relationship between cameras, is proposed for generating new set of particles to recover the tracking when tracking failure is detected. Experimental results based on HDTV video sequences (2014 Inter High School Men's Volleyball Games, Japan), which were captured by four cameras located at each corner of the court, show that the success rate achieved by the proposals of 3D ball tracking is 99.42%.

  • Energy Efficient Information Retrieval for Content Centric Networks in Disaster Environment

    Yusaku HAYAMIZU  Tomohiko YAGYU  Miki YAMAMOTO  

     
    PAPER

      Vol:
    E99-B No:12
      Page(s):
    2509-2519

    Communication infrastructures under the influence of the disaster strike, e.g., earthquake, will be partitioned due to the significant damage of network components such as base stations. The communication model of the Internet bases on a location-oriented ID, i.e., IP address, and depends on the DNS (Domain Name System) for name resolution. Therefore such damage remarkably deprives the reachability to the information. To achieve robustness of information retrieval in disaster situation, we try to apply CCN/NDN (Content-Centric Networking/Named-Data Networking) to information networks fragmented by the disaster strike. However, existing retransmission control in CCN is not suitable for the fragmented networks with intermittent links due to the timer-based end-to-end behavior. Also, the intermittent links cause a problem for cache behavior. In order to resolve these technical issues, we propose a new packet forwarding scheme with the dynamic routing protocol which resolves retransmission control problem and cache control scheme suitable for the fragmented networks. Our simulation results reveal that the proposed caching scheme can stably store popular contents into cache storages of routers and improve cache hit ratio. And they also reveal that our proposed packet forwarding method significantly improves traffic load, energy consumption and content retrieval delay in fragmented networks.

  • Fundamental Characteristics of Arc Extinction at DC Low Current Interruption with High Voltage (<500V)

    Koichiro SAWA  Masatoshi TSURUOKA  Makito MORII  

     
    PAPER

      Vol:
    E99-C No:9
      Page(s):
    1016-1022

    Various DC power supply systems such as photovoltaic power generation, fuel cell and others have been gradually spreading, so that DC power distribution systems are expected as one of energy-saving technologies at houses and business-related buildings as well as data centers and factories. Under such circumstances switches for electric appliances are requested to interrupt DC current safely in DC power systems (DC 300-400V). It is well-known that DC current is much more difficult to be interrupted than AC current with current-zero. In this paper a model switch is developed and fundamental characteristics of DC current interruption in a resistive circuit is experimentally and theoretically examined. Consequently arc duration is found to be approximately a function of interrupted power rather than source voltage and circuit current. In addition arc length at its extinction is obtained by the observation of a high-speed camera. Then the arc length is found to be decided only by interrupted power like the gap length, independent of separation velocity. From these results it can be made clear that the arc form becomes arc-shaped at its extinction when the interrupted power is larger than about 500W. In addition the effect of magnetic blow-out on arc extinction is examined.

  • Contact Duration-Aware Epidemic Broadcasting in Delay/Disruption-Tolerant Networks Open Access

    Kohei WATABE  Hiroyuki OHSAKI  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2389-2399

    DTNs (Delay/Disruption-Tolerant Networks) composed of mobile nodes in low node-density environments have attracted considerable attention in recent years. In this paper, we propose a CD-BCAST (Contact Duration BroadCAST) mechanism that can reduce the number of message forwardings while maintaining short message delivery delays in DTNs composed of mobile nodes. The key idea behind CD-BCAST is to increase the probability of simultaneous forwarding by intentionally delaying message forwarding based on the contact duration distribution measured by each node. Through simulations, we show that CD-BCAST needs substantially less message forwardings than conventional mechanisms and it does not require parameter tuning under varieties of communication ranges and node densities.

  • Improvement of Interruptibility Estimation during PC Work by Reflecting Conversation Status

    Satoshi HASHIMOTO  Takahiro TANAKA  Kazuaki AOKI  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Vol:
    E97-D No:12
      Page(s):
    3171-3180

    Frequently interrupting someone who is busy will decrease his or her productivity. To minimize this risk, a number of interruptibility estimation methods based on PC activity such as typing or mouse clicks have been developed. However, these estimation methods do not take account of the effect of conversations in relation to the interruptibility of office workers engaged in intellectual activities such as scientific research. This study proposes an interruptibility estimation method that takes account of the conversation status. Two conversation indices, “In conversation” and “End of conversation” were used in a method that we developed based on our analysis of 50 hours worth of recorded activity. Experiments, using the conversation status as judged by the Wizard-of-OZ method, demonstrated that the estimation accuracy can be improved by the two indices. Furthermore, an automatic conversation status recognition system was developed to replace the Wizard-of-OZ procedure. The results of using it for interruptibility estimation suggest the effectiveness of the automatically recognized conversation status.

  • Chaotic Behavior in a Switching Delay Circuit

    Akihito MATSUO  Hiroyuki ASAHARA  Takuji KOUSAKA  

     
    PAPER-Nonlinear Problems

      Vol:
    E95-A No:8
      Page(s):
    1329-1336

    This paper clarifies the bifurcation structure of the chaotic attractor in an interrupted circuit with switching delay from theoretical and experimental view points. First, we introduce the circuit model and its dynamics. Next, we define the return map in order to investigate the bifurcation structure of the chaotic attractor. Finally, we discuss the dynamical effect of switching delay in the existence region of the chaotic attractor compared with that of a circuit with ideal switching.

  • An Novel Message Transmission Delay Model for Disruption Tolerant Networking

    Jin QIAN  Dacheng LIU  Ye TAO  Xiangmin HUANG  Yong LI  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2661-2664

    The propagation of messages among a group of people, which forms opportunistic Disruption Tolerant Networking (DTN), can be modeled as dynamic graph with links joining every two nodes up and down at a stationary speed. As people in DTN might have different probabilities of sending messages to each other, they should be divided into distinct groups with different link generate speed λ and link perish speed µ. In this letter, we focus on the two-group case, and apply Edge-Markovian Dynamic Graphs to present an analysis framework to evaluate the average delay for the information dissemination in DTN. We also give extensive simulation and numerical results revealing the influence of various parameters.

  • Multi-Channel MAC Protocols Aiming at Aggressive Use of Vacant Resources with Two Transceivers

    Yosuke TANIGAWA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    519-530

    Multi-Channel MAC protocols increase network throughput because multiple data transmissions can take place simultaneously. However, existing Multi-Channel MAC protocols do not take full advantage of the multi-channel environment, because they lack a mechanism allowing wireless stations to acquire vacant channel and time resources. In this paper, we first establish the basic model of existing Multi-Channel MAC protocols to know the capability of the most important existing protocols. Next, under the condition that each station can use only two transceivers, we propose Multi-Channel MAC protocols that effectively utilize idle channels and potentially available time resources of stations by employing bursts and interrupted frame transfers. We assume a transceiver can behave as either a transmitter or a receiver but not both at the same time. Moreover, we show the effectiveness of our proposal by computer simulation. Furthermore, through the evaluation in the case that each station can use more than two transceivers, we confirm two transceivers' case is best solution in terms of both attained throughput and hardware complexity.

  • Optimal Multi-Frame Content Transmission in Disruption Tolerant Networking

    Jin QIAN  Dacheng LIU  Yong LI  Ye TAO  Tao XING  

     
    LETTER-Network

      Vol:
    E94-B No:11
      Page(s):
    3132-3136

    Due to the lack of end-to-end paths between the communication source and destination in the Disruption Tolerant Network (DTN), its routing employs the store-carry-and-forward mechanism. In order to provide communication service in the DTN where there is only intermittent connectivity between nodes, a variety of epidemic-style routing algorithms have been proposed to achieve high message delivery probability at the cost of energy consumption. In this contribution, we investigate the problem of optimal multi-frame content transmission. By formulating the optimization problem with a Markov model, we derive the optimal policies under the two conditions of with and without energy constraint. We also investigate the performance of the proposed optimal policies through extensive numerical analyses, and conclude that the optimal policies give the best performance and the energy constraint critically degrades the system performance in the multi-frame content transmission.

  • Experimental Study of the Arc Plasma Characteristics in SF6, N2 and CO2

    Xingwen LI  Shenli JIA  Yimin YOU  Zongqian SHI  

     
    PAPER

      Vol:
    E94-C No:9
      Page(s):
    1422-1426

    The paper is devoted to the experimental study of the arc plasma characteristics in SF6, N2 and CO2. To one flexible model of gas circuit breaker, short circuit experiments have been carried out considering the influence of contact gap (4–12 mm), gas pressure (1–5 atm), short circuit current (1–5 kA effective value) as well as gas species particularly. During the experiments, the arc image, arc current and arc voltage are recorded by the high speed camera, shunt and voltage transducer, respectively. It demonstrates that to the above mentioned three kinds of gases, the arc radius and arc voltage increase with the short circuit current and gas pressure normally; however, under the same experimental conditions, N2 arc holds the minimum arc radius and the maximum arc voltage, and the arc voltage of SF6 arc is the lowest.

  • Nested Interrupt Analysis of Low Cost and High Performance Embedded Systems Using GSPN Framework

    Cheng-Min LIN  

     
    PAPER-Software System

      Vol:
    E93-D No:9
      Page(s):
    2509-2519

    Interrupt service routines are a key technology for embedded systems. In this paper, we introduce the standard approach for using Generalized Stochastic Petri Nets (GSPNs) as a high-level model for generating CTMC Continuous-Time Markov Chains (CTMCs) and then use Markov Reward Models (MRMs) to compute the performance for embedded systems. This framework is employed to analyze two embedded controllers with low cost and high performance, ARM7 and Cortex-M3. Cortex-M3 is designed with a tail-chaining mechanism to improve the performance of ARM7 when a nested interrupt occurs on an embedded controller. The Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption and interrupt overhead performance. Using numerical results, in spite of the power consumption or interrupt overhead, Cortex-M3 performs better than ARM7.

  • Opening Electrical Contacts: The Transition from the Molten Metal Bridge to the Electric Arc Open Access

    Paul G. SLADE  

     
    INVITED PAPER

      Vol:
    E93-C No:9
      Page(s):
    1380-1386

    This paper presents a comprehensive explanation of the formation of the electric arc between opening contacts in a current carrying electric circuit. As the contacts begin to open a molten metal bridge forms between them. The rupture of this bridge and the initial formation of the electric arc are studied in both atmospheric air and vacuum using experiments to determine the direction of metal transfer between the contacts as a function of time after the rupture of the molten metal bridge. High speed streak photography is also used to show the rupture of the molten metal bridge and the initial formation of the electric arc. Analysis of these data show that a very high-pressure, high-temperature metal vapor zone exists between the contacts after the rupture of the molten metal bridge. Under this condition a pseudo-arc forms where current is carried by metal ions and an anomalous, high net transfer of metal to the cathodic contact occurs. The pressure in this region decreases rapidly and there is a transition to the usual electric arc, which still operates in the metal vapor. In this arc the current is now mostly carried by electrons. The data shows that there is still a net transfer of metal to the cathode, but now its volume is a function of the arcing time.

1-20hit(41hit)