The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

2281-2300hit(22683hit)

  • Non-Contact Instantaneous Heart Rate Extraction System Using 24-GHz Microwave Doppler Sensor

    Shintaro IZUMI  Takaaki OKANO  Daichi MATSUNAGA  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1088-1096

    This paper describes a non-contact and noise-tolerant heart rate monitoring system using a 24-GHz microwave Doppler sensor. The microwave Doppler sensor placed at some distance from the user's chest detects the small vibrations of the body surface due to the heartbeats. The objective of this work is to detect the instantaneous heart rate (IHR) using this non-contact system in a car, because the possible application of the proposed system is a driver health monitoring based on heart rate variability analysis. IHR can contribute to preventing heart-triggered disasters and to detect mental stress state. However, the Doppler sensor system is very sensitive and it can be easily contaminated by motion artifacts and road noise especially while driving. To address this problem, time-frequency analysis using the parametric method and template matching method are employed. Measurement results show that the Doppler sensor, which is pasted on the clothing surface, can successfully extract the heart rate through clothes. The proposed method achieves 13.1-ms RMS error in IHR measurements conducted on 11 subjects in a car on an ordinary road.

  • Dependable Wireless Feedback Loop Control Schemes Considering Errors and Delay in Sensing Data and Control Command Packets

    Satoshi SEIMIYA  Takumi KOBAYASHI  Ryuji KOHNO  

     
    PAPER

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1113-1120

    In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.

  • An Enhanced Affinity Graph for Image Segmentation

    Guodong SUN  Kai LIN  Junhao WANG  Yang ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1073-1080

    This paper proposes an enhanced affinity graph (EA-graph) for image segmentation. Firstly, the original image is over-segmented to obtain several sets of superpixels with different scales, and the color and texture features of the superpixels are extracted. Then, the similarity relationship between neighborhood superpixels is used to construct the local affinity graph. Meanwhile, the global affinity graph is obtained by sparse reconstruction among all superpixels. The local affinity graph and global affinity graph are superimposed to obtain an enhanced affinity graph for eliminating the influences of noise and isolated regions in the image. Finally, a bipartite graph is introduced to express the affiliation between pixels and superpixels, and segmentation is performed using a spectral clustering algorithm. Experimental results on the Berkeley segmentation database demonstrate that our method achieves significantly better performance compared to state-of-the-art algorithms.

  • Investigation of Time Evolution of Length of Break Arcs Occurring in a 48VDC/50-300A Resistive Circuit

    Kenshi HAMAMOTO  Junya SEKIKAWA  

     
    BRIEF PAPER-Electromechanical Devices and Components

      Vol:
    E102-C No:5
      Page(s):
    424-427

    Break arcs are generated in a 48VDC resistive circuit. Circuit current I0 when electrical contacts are closed is changed from 50A to 300A. The break arcs are observed by a high-speed camera with appropriate settings of exposure from horizontal direction. Length of the break arcs L is measured from images of the break arcs. Time evolutions of the length L and gap voltage Vg are investigated. The following results are obtained. By appropriate settings of the high-speed camera, the time evolution of the length L is obtained from just after ignition to before arc extinction. Tendency of increase of the length L is similar to that of increase of the voltage Vg for each current I0.

  • A Generalized Construction of Codebook Asymptotically Meeting the Welch Bound

    Gang WANG  Min-Yao NIU  Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:5
      Page(s):
    732-737

    In this letter, as a generalization of Luo et al.'s constructions, a construction of codebook, which meets the Welch bound asymptotically, is proposed. The parameters of codebook presented in this paper are new in some cases.

  • AI@ntiPhish — Machine Learning Mechanisms for Cyber-Phishing Attack

    Yu-Hung CHEN  Jiann-Liang CHEN  

     
    INVITED PAPER

      Pubricized:
    2019/02/18
      Vol:
    E102-D No:5
      Page(s):
    878-887

    This study proposes a novel machine learning architecture and various learning algorithms to build-in anti-phishing services for avoiding cyber-phishing attack. For the rapid develop of information technology, hackers engage in cyber-phishing attack to steal important personal information, which draws information security concerns. The prevention of phishing website involves in various aspect, for example, user training, public awareness, fraudulent phishing, etc. However, recent phishing research has mainly focused on preventing fraudulent phishing and relied on manual identification that is inefficient for real-time detection systems. In this study, we used methods such as ANOVA, X2, and information gain to evaluate features. Then, we filtered out the unrelated features and obtained the top 28 most related features as the features to use for the training and evaluation of traditional machine learning algorithms, such as Support Vector Machine (SVM) with linear or rbf kernels, Logistic Regression (LR), Decision tree, and K-Nearest Neighbor (KNN). This research also evaluated the above algorithms with the ensemble learning concept by combining multiple classifiers, such as Adaboost, bagging, and voting. Finally, the eXtreme Gradient Boosting (XGBoost) model exhibited the best performance of 99.2%, among the algorithms considered in this study.

  • Generation Efficiency of Fiber Four-Wave Mixing for Phase-Shift Keying Signal Light

    Kyo INOUE  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/11/13
      Vol:
    E102-B No:5
      Page(s):
    1005-1009

    The efficiency of generating four-wave mixing (FWM) from phase-modulated (PM) optical signal is studied. An analysis, that takes bit shifts occurring during fiber propagation due to group velocity differences into account, indicates that the FWM efficiency from PM signals is smaller than that from continuous waves in fiber transmission lines whose distance is longer than the walk-off length between transmitted optical signals.

  • Memory Saving Feature Descriptor Using Scale and Rotation Invariant Patches around the Feature Ppoints Open Access

    Masamichi KITAGAWA  Ikuko SHIMIZU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/02/05
      Vol:
    E102-D No:5
      Page(s):
    1106-1110

    To expand the use of systems using a camera on portable devices such as tablets and smartphones, we have developed and propose a memory saving feature descriptor, the use of which is one of the essential techniques in computer vision. The proposed descriptor compares pixel values of pre-fixed positions in the small patch around the feature point and stores binary values. Like the conventional descriptors, it extracts the patch on the basis of the scale and orientation of the feature point. For memories of the same size, it achieves higher accuracy than ORB and BRISK in all cases and AKAZE for the images with textured regions.

  • Density of Pooling Matrices vs. Sparsity of Signals for Group Testing Problems

    Jin-Taek SEONG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1081-1084

    In this paper, we consider a group testing (GT) problem. We derive a lower bound on the probability of error for successful decoding of defected binary signals. To this end, we exploit Fano's inequality theorem in the information theory. We show that the probability of error is bounded as an entropy function, a density of a pooling matrix and a sparsity of a binary signal. We evaluate that for decoding of highly sparse signals, the pooling matrix is required to be dense. Conversely, if dense signals are needed to decode, the sparse pooling matrix should be designed to achieve the small probability of error.

  • RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks

    Cheng LUO  Wei CAO  Lingli WANG  Philip H. W. LEONG  

     
    PAPER-Applications

      Pubricized:
    2019/02/19
      Vol:
    E102-D No:5
      Page(s):
    1037-1045

    With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardware implementation difficult. In this paper, we present the quantized and reconstructed deep neural network (QR-DNN) technique, which first inserts batch normalization (BN) layers in the network during training, and later removes them to facilitate efficient hardware implementation. Moreover, an accurate and efficient residual network accelerator (RNA) is presented based on QR-DNN with batch-normalization-free structures and weights represented in a logarithmic number system. RNA employs a systolic array architecture to perform shift-and-accumulate operations instead of multiplication operations. QR-DNN is shown to achieve a 1∼2% improvement in accuracy over existing techniques, and RNA over previous best fixed-point accelerators. An FPGA implementation on a Xilinx Zynq XC7Z045 device achieves 804.03 GOPS, 104.15 FPS and 91.41% top-5 accuracy for the ResNet-50 benchmark, and state-of-the-art results are also reported for AlexNet and VGG.

  • An Optimized Low-Power Optical Memory Access Network for Kilocore Systems

    Tao LIU  Huaxi GU  Yue WANG  Wei ZOU  

     
    LETTER-Computer System

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1085-1088

    An optimized low-power optical memory access network is proposed to alleviate the cost of microring resonators (MRs) in kilocore systems, such as the pass-by loss and integration difficulty. Compared with traditional electronic bus interconnect, the proposed network reduces power consumption and latency by 80% to 89% and 21% to 24%. Moreover, the new network decreases the number of MRs by 90.6% without an increase in power consumption and latency when making a comparison with Optical Ring Network-on-Chip (ORNoC).

  • The Combination Effect of Cache Decision and Off-Path Cache Routing in Content Oriented Networks

    Yusaku HAYAMIZU  Akihisa SHIBUYA  Miki YAMAMOTO  

     
    PAPER-Network

      Pubricized:
    2018/10/29
      Vol:
    E102-B No:5
      Page(s):
    1010-1018

    In content oriented networks (CON), routers in a network are generally equipped with local cache storages and store incoming contents temporarily. Efficient utilization of total cache storage in networks is one of the most important technical issues in CON, as it can reduce content server load, content download latency and network traffic. Performance of networked cache is reported to strongly depend on both cache decision and content request routing. In this paper, we evaluate several combinations of these two strategies. Especially for routing, we take up off-path cache routing, Breadcrumbs, as one of the content request routing proposals. Our performance evaluation results show that off-path cache routing, Breadcrumbs, suffers low performance with cache decisions which generally has high performance with shortest path routing (SPR), and obtains excellent performance with TERC (Transparent En-Route Cache) which is well-known to have low performance with widely used SPR. Our detailed evaluation results in two network environments, emerging CONs and conventional IP, show these insights hold in both of these two network environments.

  • Optimized Power Allocation Scheme for Distributed Antenna Systems with D2D Communication

    Xingquan LI  Chunlong HE  Jihong ZHANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1061-1068

    In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.

  • Dynamic Strain Measurement with Bandwidth Allocation by Using Random Accessibility of BOCDR

    Osamu FURUKAWA  Hideo SHIDA  Shin-ichiro TEZUKA  Satoshi MATSUURA  Shoji ADACHI  

     
    PAPER-Sensing

      Pubricized:
    2018/11/13
      Vol:
    E102-B No:5
      Page(s):
    1069-1076

    A Brillouin optical correlation domain reflectometry (BOCDR) system, which can set measuring point to arbitrary distance that is aligned in a random order along an optical fiber (i.e., random accessibility), is proposed to measure dynamic strain and experimentally evaluated. This random-access system can allocate measurement bandwidth to measuring point by assigning the measurement times at each measuring point of the total number of strain measurements. This assigned number is not always equally but as necessary for plural objects with different natural frequencies. To verify the system, strain of two vibrating objects with different natural frequencies was measured by one optical fiber which is attached to those objects. The system allocated appropriate measurement bandwidth to each object and simultaneously measured dynamic strain corresponding to the vibrating objects.

  • A P2P Sensor Data Stream Delivery System That Guarantees the Specified Reachability under Churn Situations

    Tomoya KAWAKAMI  Tomoki YOSHIHISA  Yuuichi TERANISHI  

     
    PAPER

      Pubricized:
    2019/02/06
      Vol:
    E102-D No:5
      Page(s):
    932-941

    In this paper, we propose a method to construct a scalable sensor data stream delivery system that guarantees the specified delivery quality of service (i.e., total reachability to destinations), even when delivery server resources (nodes) are in a heterogeneous churn situation. A number of P2P-based methods have been proposed for constructing a scalable and efficient sensor data stream system that accommodates different delivery cycles by distributing communication loads of the nodes. However, no existing method can guarantee delivery quality of service when the nodes on the system have a heterogeneous churn rate. As an extension of existing methods, which assign relay nodes based on the distributed hashing of the time-to-deliver, our method specifies the number of replication nodes, based on the churn rate of each node and on the relevant delivery paths. Through simulations, we confirmed that our proposed method can guarantee the required reachability, while avoiding any increase in unnecessary resource assignment costs.

  • A Portable Load Balancer with ECMP Redundancy for Container Clusters

    Kimitoshi TAKAHASHI  Kento AIDA  Tomoya TANJO  Jingtao SUN  Kazushige SAGA  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    974-987

    Linux container technology and clusters of the containers are expected to make web services consisting of multiple web servers and a load balancer portable, and thus realize easy migration of web services across the different cloud providers and on-premise datacenters. This prevents service to be locked-in a single cloud provider or a single location and enables users to meet their business needs, e.g., preparing for a natural disaster. However existing container management systems lack the generic implementation to route the traffic from the internet into the web service consisting of container clusters. For example, Kubernetes, which is one of the most popular container management systems, is heavily dependent on cloud load balancers. If users use unsupported cloud providers or on-premise datacenters, it is up to users to route the traffic into their cluster while keeping the redundancy and scalability. This means that users could easily be locked-in the major cloud providers including GCP, AWS, and Azure. In this paper, we propose an architecture for a group of containerized load balancers with ECMP redundancy. We containerize Linux ipvs and exabgp, and then implement an experimental system using standard Linux boxes and open source software. We also reveal that our proposed system properly route the traffics with redundancy. Our proposed load balancers are usable even if the infrastructure does not have supported load balancers by Kubernetes and thus free users from lock-ins.

  • Secure Transmission in Wireless Powered Communication Networks with Full-Duplex Receivers

    Qun LI  Ding XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:5
      Page(s):
    750-754

    This letter studies secure communication in a wireless powered communication network with a full-duplex destination node, who applies either power splitting (PS) or time switching (TS) to coordinate energy harvesting and information decoding of received signals and transmits jamming signals to the eavesdropper using the harvested energy. The secrecy rate is maximized by optimizing PS or TS ratio and power allocation. We propose iterative algorithms with power allocation optimized by the successive convex approximation method. Simulation results demonstrate that the proposed algorithms are superior to other benchmark algorithms.

  • Overflows in Multiservice Systems Open Access

    Mariusz GłĄBOWSKI  Damian KMIECIK  Maciej STASIAK  

     
    INVITED PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    958-969

    This article presents a universal and versatile model of multiservice overflow systems based on Hayward's concept. The model can be used to analyze modern telecommunications and computer networks, mobile networks in particular. The advantage of the proposed approach lies in its ability to analyze overflow systems with elastic and adaptive traffic, systems with distributed resources and systems with non-full-availability in primary and secondary resources.

  • Visibility Restoration via Smoothing Speed for Vein Recognition

    Wonjun KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/02/08
      Vol:
    E102-D No:5
      Page(s):
    1102-1105

    A novel image enhancement method for vein recognition is introduced. Inspired by observation that the intensity of the vein vessel changes rapidly during the smoothing process compared to that of background (i.e., skin tissue) due to its thin and long shape, we propose to exploit the smoothing speed as a restoration weight for the vein image enhancement. Experimental results based on the CASIA multispectral palm vein database demonstrate that the proposed method is effective to improve the performance of vein recognition.

  • Distributed Estimation over Delayed Sensor Network with Scalable Communication Open Access

    Ryosuke ADACHI  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Vol:
    E102-A No:5
      Page(s):
    712-720

    This paper proposes a distributed delay-compensated observer for a wireless sensor network with delay. Each node of the sensor network aggregates data from the other nodes and sends the aggregated data to the neighbor nodes. In this communication, each node also compensates communication delays among the neighbor nodes. Therefore, all of the nodes can synchronize their sensor measurements using scalable and local communication in real-time. All of the nodes estimate the state variables of a system simultaneously. The observer in each node is similar to the delay-compensated observer with multi-sensor delays proposed by Watanabe et al. Convergence rates for the proposed observer can be arbitrarily designed regardless of the communication delays. The effectiveness of the proposed method is verified by a numerical simulation.

2281-2300hit(22683hit)