The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

2901-2920hit(22683hit)

  • Static Dependency Pair Method in Functional Programs

    Keiichirou KUSAKARI  

     
    PAPER-Formal Approaches

      Pubricized:
    2018/03/16
      Vol:
    E101-D No:6
      Page(s):
    1491-1502

    We have previously introduced the static dependency pair method that proves termination by analyzing the static recursive structure of various extensions of term rewriting systems for handling higher-order functions. The key is to succeed with the formalization of recursive structures based on the notion of strong computability, which is introduced for the termination of typed λ-calculi. To bring the static dependency pair method close to existing functional programs, we also extend the method to term rewriting models in which functional abstractions with patterns are permitted. Since the static dependency pair method is not sound in general, we formulate a class; namely, accessibility, in which the method works well. The static dependency pair method is a very natural reasoning; therefore, our extension differs only slightly from previous results. On the other hand, a soundness proof is dramatically difficult.

  • Evaluation of Register Number Abstraction for Enhanced Instruction Register Files

    Naoki FUJIEDA  Kiyohiro SATO  Ryodai IWAMOTO  Shuichi ICHIKAWA  

     
    PAPER-Computer System

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1521-1531

    Instruction set randomization (ISR) is a cost-effective obfuscation technique that modifies or enhances the relationship between instructions and machine languages. An Instruction Register File (IRF), a list of frequently used instructions, can be used for ISR by providing the way of indirect access to them. This study examines the IRF that integrates a positional register, which was proposed as a supplementary unit of the IRF, for the sake of tamper resistance. According to our evaluation, with a new design for the contents of the positional register, the measure of tamper resistance was increased by 8.2% at a maximum, which corresponds to a 32.2% increase in the size of the IRF. The number of logic elements increased by the addition of the positional register was 3.5% of its baseline processor.

  • Optimization of Body Biasing for Variable Pipelined Coarse-Grained Reconfigurable Architectures

    Takuya KOJIMA  Naoki ANDO  Hayate OKUHARA  Ng. Anh Vu DOAN  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2018/03/09
      Vol:
    E101-D No:6
      Page(s):
    1532-1540

    Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.

  • Pain Intensity Estimation Using Deep Spatiotemporal and Handcrafted Features

    Jinwei WANG  Huazhi SUN  

     
    PAPER-Pattern Recognition

      Pubricized:
    2018/03/12
      Vol:
    E101-D No:6
      Page(s):
    1572-1580

    Automatically recognizing pain and estimating pain intensity is an emerging research area that has promising applications in the medical and healthcare field, and this task possesses a crucial role in the diagnosis and treatment of patients who have limited ability to communicate verbally and remains a challenge in pattern recognition. Recently, deep learning has achieved impressive results in many domains. However, deep architectures require a significant amount of labeled data for training, and they may fail to outperform conventional handcrafted features due to insufficient data, which is also the problem faced by pain detection. Furthermore, the latest studies show that handcrafted features may provide complementary information to deep-learned features; hence, combining these features may result in improved performance. Motived by the above considerations, in this paper, we propose an innovative method based on the combination of deep spatiotemporal and handcrafted features for pain intensity estimation. We use C3D, a deep 3-dimensional convolutional network that takes a continuous sequence of video frames as input, to extract spatiotemporal facial features. C3D models the appearance and motion of videos simultaneously. For handcrafted features, we propose extracting the geometric information by computing the distance between normalized facial landmarks per frame and the ones of the mean face shape, and we extract the appearance information using the histogram of oriented gradients (HOG) features around normalized facial landmarks per frame. Two levels of SVRs are trained using spatiotemporal, geometric and appearance features to obtain estimation results. We tested our proposed method on the UNBC-McMaster shoulder pain expression archive database and obtained experimental results that outperform the current state-of-the-art.

  • Submodular Based Unsupervised Data Selection

    Aiying ZHANG  Chongjia NI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1591-1604

    Automatic speech recognition (ASR) and keyword search (KWS) have more and more found their way into our everyday lives, and their successes could boil down lots of factors. In these factors, large scale of speech data used for acoustic modeling is the key factor. However, it is difficult and time-consuming to acquire large scale of transcribed speech data for some languages, especially for low-resource languages. Thus, at low-resource condition, it becomes important with which transcribed data for acoustic modeling for improving the performance of ASR and KWS. In view of using acoustic data for acoustic modeling, there are two different ways. One is using the target language data, and another is using large scale of other source languages data for cross-lingual transfer. In this paper, we propose some approaches for efficient selecting acoustic data for acoustic modeling. For target language data, a submodular based unsupervised data selection approach is proposed. The submodular based unsupervised data selection could select more informative and representative utterances for manual transcription for acoustic modeling. For other source languages data, the high misclassified as target language based submodular multilingual data selection approach and knowledge based group multilingual data selection approach are proposed. When using selected multilingual data for multilingual deep neural network training for cross-lingual transfer, it could improve the performance of ASR and KWS of target language. When comparing our proposed multilingual data selection approach with language identification based multilingual data selection approach, our proposed approach also obtains better effect. In this paper, we also analyze and compare the language factor and the acoustic factor influence on the performance of ASR and KWS. The influence of different scale of target language data on the performance of ASR and KWS at mono-lingual condition and cross-lingual condition are also compared and analyzed, and some significant conclusions can be concluded.

  • Horizontal Partition for Scalable Control in Software-Defined Data Center Networks

    Shaojun ZHANG  Julong LAN  Chao QI  Penghao SUN  

     
    LETTER-Information Network

      Pubricized:
    2018/03/07
      Vol:
    E101-D No:6
      Page(s):
    1691-1693

    Distributed control plane architecture has been employed in software-defined data center networks to improve the scalability of control plane. However, since the flow space is partitioned by assigning switches to different controllers, the network topology is also partitioned and the rule setup process has to invoke multiple controllers. Besides, the control load balancing based on switch migration is heavyweight. In this paper, we propose a lightweight load partition method which decouples the flow space from the network topology. The flow space is partitioned with hosts rather than switches as carriers, which supports fine-grained and lightweight load balancing. Moreover, the switches are no longer needed to be assigned to different controllers and we keep all of them controlled by each controller, thus each flow request can be processed by exactly one controller in a centralized style. Evaluations show that our scheme reduces rule setup costs and achieves lightweight load balancing.

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Vol:
    E101-A No:6
      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.

  • More New Classes of Differentially 4-Uniform Permutations with Good Cryptographic Properties

    Jie PENG  Chik How TAN  Qichun WANG  Jianhua GAO  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    945-952

    Research on permutation polynomials over the finite field F22k with significant cryptographical properties such as possibly low differential uniformity, possibly high nonlinearity and algebraic degree has attracted a lot of attention and made considerable progress in recent years. Once used as the substitution boxes (S-boxes) in the block ciphers with Substitution Permutation Network (SPN) structure, this kind of polynomials can have a good performance against the classical cryptographic analysis such as linear attacks, differential attacks and the higher order differential attacks. In this paper we put forward a new construction of differentially 4-uniformity permutations over F22k by modifying the inverse function on some specific subsets of the finite field. Compared with the previous similar works, there are several advantages of our new construction. One is that it can provide a very large number of Carlet-Charpin-Zinoviev equivalent classes of functions (increasing exponentially). Another advantage is that all the functions are explicitly constructed, and the polynomial forms are obtained for three subclasses. The third advantage is that the chosen subsets are very large, hence all the new functions are not close to the inverse function. Therefore, our construction may provide more choices for designing of S-boxes. Moreover, it has been checked by a software programm for k=3 that except for one special function, all the other functions in our construction are Carlet-Charpin-Zinoviev equivalent to the existing ones.

  • Hybrid Opto-Electrical CDM-Based Access Network

    Takahiro KODAMA  Gabriella CINCOTTI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/12/01
      Vol:
    E101-B No:6
      Page(s):
    1359-1365

    A novel adaptive code division multiplexing system with hybrid electrical and optical codes is proposed for flexible and dynamic resource allocation in next generation asynchronous optical access networks. We analyze the performance of a 10Gbps × 12 optical node unit, using hierarchical 8-level optical and 4-level electrical phase shift keying codes.

  • Exposure-Resilient Identity-Based Dynamic Multi-Cast Key Distribution

    Kazuki YONEYAMA  Reo YOSHIDA  Yuto KAWAHARA  Tetsutaro KOBAYASHI  Hitoshi FUJI  Tomohide YAMAMOTO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    929-944

    In this paper, we propose the first identity-based dynamic multi-cast key distribution (ID-DMKD) protocol which is secure against maximum exposure of secret information (e.g., secret keys and session-specific randomness). In DMKD protocols, users share a common session key without revealing any information of the session key to the semi-honest server, and can join/leave to/from the group at any time even after establishing the session key. Most of the known DMKD protocols are insecure if some secret information is exposed. Recently, an exposure resilient DMKD protocol was introduced, however, each user must manage his/her certificate by using the public-key infrastructure. We solve this problem by constructing the DMKD protocol authenticated by user's ID (i.e., without certificate). We introduce a formal security definition for ID-DMKD by extending the previous definition for DMKD. We must carefully consider exposure of the server's static secret key in the ID-DMKD setting because exposure of the server's static secret key causes exposure of all users' static secret keys. We prove that our protocol is secure in our security model in the standard model. Another advantage of our protocol is scalability: communication and computation costs of each user are independent from the number of users. Furthermore, we show how to extend our protocol to achieve non-interactive join by using certificateless encryption. Such an extension is useful in applications that the group members frequently change like group chat services.

  • A New Read Scheme for High-Density Emerging Memories

    Takashi OHSAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:6
      Page(s):
    423-429

    Several new memories are being studied as candidates of future DRAM that seems difficult to be scaled. However, the read signal in these new memories needs to be amplified in a single-end manner with reference signal supplied if they are aimed for being applied to the high-density main memory. This scheme, which is fortunately not necessary in DRAM's 1/2Vdd pre-charge sense amp, can become a serious bottleneck in the new memory development, because the device electrical parameters in these new memory cells are prone to large cell-to-cell variations without exception. Furthermore, the extent to which the parameter fluctuates in data “1” is generally not the same as in data “0”. In these situations, a new sensing scheme is proposed that can minimize the sensing error rate for high-density single-end emerging memories like STT-MRAM, ReRAM and PCRAM. The scheme is based on averaging multiple dummy cell pairs that are written “1” and “0” in a weighted manner according to the fluctuation unbalance between “1” and “0”. A detailed analysis shows that this scheme is effective in designing 128Mb 1T1MTJ STT-MRAM with the results that the required TMR ratio of an MTJ can be relaxed from 130% to 90% for the fluctuation of 6% sigma-to-average ratio of MTJ resistance in a 16 pair-dummy cell averaging case by using this technology when compared with the arithmetic averaging method.

  • Cooperative Jamming for Secure Transmission with Finite Alphabet Input under Individual Power Constraint

    Kuo CAO  Yueming CAI  Yongpeng WU  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:6
      Page(s):
    961-966

    This letter studies secure transmission design with finite alphabet input for cooperative jamming network under individual power constraint. By adopting the zero-force scheme, where the jamming signal is fully laid in the null space of the relay-destination channel, the problem of enhancing the achievable secrecy rate is decomposed into two independent subproblems: relay weights design and power control. We reveal that the problem of relay weights design is identical to the problem of minimizing the maximal equivalent source-eavesdropper channel gain, which can be transformed into a semi-definite programming (SDP) problem and thus is tackled using interior point method. Besides, the problem of power control is solved with the fundamental relation between mutual information and minimum mean square error (MMSE). Numerical results show that the proposed scheme achieves significant performance gains compared to the conventional Gaussian design.

  • Correlation Performance Measures for Phase-Only Correlation Functions Based on Directional Statistics

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:6
      Page(s):
    967-970

    This letter proposes performance evaluation of phase-only correlation (POC) functions using signal-to-noise ratio (SNR) and peak-to-correlation energy (PCE). We derive the general expressions of SNR and PCE of the POC functions as correlation performance measures. SNR is expressed by simple fractional function of circular variance. PCE is simply given by squared peak value of the POC functions, and its expectation can be expressed in terms of circular variance.

  • Fabrication of Integrated PTFE-Filled Waveguide Butler Matrix for Short Millimeter-Wave by SR Direct Etching

    Mitsuyoshi KISHIHARA  Masaya TAKEUCHI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:6
      Page(s):
    416-422

    The microfabrication technique based on SR (Synchrotron Radiation) direct etching process has recently been applied to construct PTFE microstructures. This paper attempts to fabricate an integrated PTFE-filled waveguide Butler matrix for short millimeter-wave by SR direct etching. First, a cruciform 3-dB directional coupler and an intersection circuit (0-dB coupler) are designed at 180 GHz. Then, a 4×4 Butler matrix with horn antennas is designed and fabricated. Finally, the measured radiation patterns of the Butler matrix are shown.

  • Image Denoising Using Block-Rotation-Based SVD Filtering in Wavelet Domain

    Min WANG  Shudao ZHOU  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1621-1628

    This paper proposes an image denoising method using singular value decomposition (SVD) with block-rotation-based operations in wavelet domain. First, we decompose a noisy image to some sub-blocks, and use the single-level discrete 2-D wavelet transform to decompose each sub-block into the low-frequency image part and the high-frequency parts. Then, we use SVD and rotation-based SVD with the rank-1 approximation to filter the noise of the different high-frequency parts, and get the denoised sub-blocks. Finally, we reconstruct the sub-block from the low-frequency part and the filtered the high-frequency parts by the inverse wavelet transform, and reorganize each denoised sub-blocks to obtain the final denoised image. Experiments show the effectiveness of this method, compared with relevant methods.

  • Scattering Characteristics of the Human Body in 67-GHz Band

    Ngochao TRAN  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Takehiro NAKAMURA  Hiroshi TOKUDA  Takao MIYAKE  Robin WANG  Zhu WEN  Hajime KITANO  Roger NICHOLS  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/15
      Vol:
    E101-B No:6
      Page(s):
    1434-1442

    The fifth generation (5G) system using millimeter waves is considered for application to high traffic areas with a dense population of pedestrians. In such an environment, the effects of shadowing and scattering of radio waves by human bodies (HBs) on propagation channels cannot be ignored. In this paper, we clarify based on measurement the characteristics of waves scattered by the HB for typical non-line-of-sight scenarios in street canyon environments. In these scenarios, there are street intersections with pedestrians, and the angles that are formed by the transmission point, HB, and reception point are nearly equal to 90 degrees. We use a wide-band channel sounder for the 67-GHz band with a 1-GHz bandwidth and horn antennas in the measurements. The distance parameter between antennas and the HB is changed in the measurements. Moreover, the direction of the HB is changed from 0 to 360 degrees. The evaluation results show that the radar cross section (RCS) of the HB fluctuates randomly over the range of approximately 20dB. Moreover, the distribution of the RCS of the HB is a Gaussian distribution with a mean value of -9.4dBsm and the standard deviation of 4.2dBsm.

  • Complex-Valued Fully Convolutional Networks for MIMO Radar Signal Segmentation

    Motoko TACHIBANA  Kohei YAMAMOTO  Kurato MAENO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/02/20
      Vol:
    E101-D No:5
      Page(s):
    1445-1448

    Radar is expected in advanced driver-assistance systems for environmentally robust measurements. In this paper, we propose a novel radar signal segmentation method by using a complex-valued fully convolutional network (CvFCN) that comprises complex-valued layers, real-valued layers, and a bidirectional conversion layer between them. We also propose an efficient automatic annotation system for dataset generation. We apply the CvFCN to two-dimensional (2D) complex-valued radar signal maps (r-maps) that comprise angle and distance axes. An r-maps is a 2D complex-valued matrix that is generated from raw radar signals by 2D Fourier transformation. We annotate the r-maps automatically using LiDAR measurements. In our experiment, we semantically segment r-map signals into pedestrian and background regions, achieving accuracy of 99.7% for the background and 96.2% for pedestrians.

  • Improvement of Endurance Characteristics for Al-Gate Hf-Based MONOS Structures on Atomically Flat Si(100) Surface Realized by Annealing in Ar/H2 Ambient

    Sohya KUDOH  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    328-333

    In this study, the effect of atomically flat Si(100) surface on Hf-based Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure was investigated. After the atomically flat Si(100) surface formation by annealing at 1050/60min in Ar/4%H2 ambient, HfO2(O)/HfN1.0(N)/HfO2(O) structure with thickness of 10/3/2nm, respectively, was in-situ deposited by electron cyclotron resonance (ECR) plasma sputtering. The memory window (MW) of Al/HfO2/HfN1.0/HfO2/p-Si(100) diodes was increased from 1.0V to 2.5V by flattening of Si(100) surface. The program and erase (P/E) voltage/time were set as 10V/5s and -8V/5s, respectively. Furthermore, it was found that the gate current density after the 103P/E cycles was decreased one order of magnitude by flattening of Si(100) surface in Ar/4.0%H2 ambient.

  • Pixel Selection and Intensity Directed Symmetry for High Frame Rate and Ultra-Low Delay Matching System

    Tingting HU  Takeshi IKENAGA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1260-1269

    High frame rate and ultra-low delay matching system plays an increasingly important role in human-machine interactive applications which call for higher frame rate and lower delay for a better experience. The large amount of processing data and the complex computation in a local feature based matching system, make it difficult to achieve a high process speed and ultra-low delay matching with limited resource. Aiming at a matching system with the process speed of more than 1000 fps and with the delay of less than 1 ms/frame, this paper puts forward a local binary feature based matching system with field-programmable gate array (FPGA). Pixel selection based 4-1-4 parallel matching and intensity directed symmetry are proposed for the implementation of this system. To design a basic framework with the high process speed and ultra-low delay using limited resource, pixel selection based 4-1-4 parallel matching is proposed, which makes it possible to use only one-thread resource consumption to achieve a four-thread processing. Assumes that the orientation of the keypoint will bisect the patch best and will point to the region with high intensity, intensity directed symmetry is proposed to calculate the keypoint orientation in a hardware friendly way, which is an important part for a rotation-robust matching system. Software experiment result shows that the proposed keypoint orientation calculation method achieves almost the same performance with the state-of-art intensity centroid orientation calculation method in a matching system. Hardware experiment result shows that the designed image process core supports to process VGA (640×480) videos at a process speed of 1306 fps and with a delay of 0.8083 ms/frame.

  • Point of Gaze Estimation Using Corneal Surface Reflection and Omnidirectional Camera Image

    Taishi OGAWA  Atsushi NAKAZAWA  Toyoaki NISHIDA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1278-1287

    We present a human point of gaze estimation system using corneal surface reflection and omnidirectional image taken by spherical panorama cameras, which becomes popular recent years. Our system enables to find where a user is looking at only from an eye image in a 360° surrounding scene image, thus, does not need gaze mapping from partial scene images to a whole scene image that are necessary in conventional eye gaze tracking system. We first generate multiple perspective scene images from an omnidirectional (equirectangular) image and perform registration between the corneal reflection and perspective images using a corneal reflection-scene image registration technique. We then compute the point of gaze using a corneal imaging technique leveraged by a 3D eye model, and project the point to an omnidirectional image. The 3D eye pose is estimate by using the particle-filter-based tracking algorithm. In experiments, we evaluated the accuracy of the 3D eye pose estimation, robustness of registration and accuracy of PoG estimations using two indoor and five outdoor scenes, and found that gaze mapping error was 5.546 [deg] on average.

2901-2920hit(22683hit)