The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

2921-2940hit(22683hit)

  • Extraction and Recognition of Shoe Logos with a Wide Variety of Appearance Using Two-Stage Classifiers

    Kazunori AOKI  Wataru OHYAMA  Tetsushi WAKABAYASHI  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1325-1332

    A logo is a symbolic presentation that is designed not only to identify a product manufacturer but also to attract the attention of shoppers. Shoe logos are a challenging subject for automatic extraction and recognition using image analysis techniques because they have characteristics that distinguish them from those of other products; that is, there is much within-class variation in the appearance of shoe logos. In this paper, we propose an automatic extraction and recognition method for shoe logos with a wide variety of appearance using a limited number of training samples. The proposed method employs maximally stable extremal regions for the initial region extraction, an iterative algorithm for region grouping, and gradient features and a support vector machine for logo recognition. The results of performance evaluation experiments using a logo dataset that consists of a wide variety of appearances show that the proposed method achieves promising performance for both logo extraction and recognition.

  • Partial Transmit Sequence Technique with Low Complexity in OFDM System

    Chang-Hee KANG  Sung-Soon PARK  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1291-1298

    In wireless communication systems, OFDM technology is a communication method that can yield high data rates. However, OFDM systems suffer high PAPR values due to the use of many of subcarriers. The SLM and the PTS technique were proposed to solve the PAPR problem in OFDM systems. However, these approaches have the disadvantage of having high complexity. This paper proposes a method which has lower complexity than the conventional PTS method but has less performance degradation.

  • PdEr-Silicide Formation and Contact Resistivity Reduction to n-Si(100) Realized by Dopant Segregation Process

    Shun-ichiro OHMI  Yuya TSUKAMOTO  Weiguang ZUO  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    311-316

    In this paper, we have investigated the PdEr-silicide formation utilizing a developed PdEr-alloy target for sputtering, and evaluated the contact resistivity of PdEr-silicide layer formed on n-Si(100) by dopant segregation process for the first time. Pd2Si and ErSi2 have same hexagonal structure, while the Schottky barrier height for electron (Φbn) is different as 0.75 eV and 0.28 eV, respectively. A 20 nm-thick PdEr-alloy layer was deposited on the n-Si(100) substrates utilizing a developed PdEr-alloy target by the RF magnetron sputtering at room temperature. Then, 10 nm-thick TiN encapsulating layer was in-situ deposited at room temperature. Next, silicidation was carried out by the RTA at 500 for 5 min in N2/4.9%H2 followed by the selective etching. From the J-V characteristics of fabricated Schottky diode, qΦbn was reduced from 0.75 eV of Pd2Si to 0.43 eV of PdEr-silicide. Furthermore, 4.0x10-8Ωcm2 was extracted for the PdEr-silicide to n-Si(100) by the dopant segregation process.

  • Perfect Gaussian Integer Sequence Pairs from Cyclic Difference Set Pairs

    Hongbin LIN  Xiuping PENG  Chao FENG  Qisheng TONG  Kai LIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    855-858

    The concept of Gaussian integer sequence pair is generalized from a single Gaussian integer sequence. In this letter, by adopting cyclic difference set pairs, a new construction method for perfect Gaussian integer sequence pairs is presented. Furthermore, the necessary and sufficient conditions for constructing perfect Gaussian integer sequence pairs are given. Through the research in this paper, a large number of perfect Gaussian integer sequence pairs can be obtained, which can greatly extend the existence of perfect sequence pairs.

  • Proactive Eavesdropping through a Third-Party Jammer

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:5
      Page(s):
    878-882

    This letter considers a legitimate proactive eavesdropping scenario, where a half-duplex legitimate monitor hires a third-party jammer for jamming the suspicious communication to improve the eavesdropping performance. The interaction between the third-party jammer and the monitor is modeled as a Stackelberg game, where the jammer moves first and sets the price for jamming the suspicious communication, and then the legitimate monitor moves subsequently and determines the requested transmit power of the jamming signals. We derive the optimal jamming price and the optimal jamming transmit power. It is shown that the proposed price-based proactive eavesdropping scheme is effective in improving the successful eavesdropping probability compared to the case without jamming. It is also shown that the proposed scheme outperforms the existing full-duplex scheme when the residual self-interference cannot be neglected.

  • Accelerating Existing Non-Blind Image Deblurring Techniques through a Strap-On Limited-Memory Switched Broyden Method

    Ichraf LAHOULI  Robby HAELTERMAN  Joris DEGROOTE  Michal SHIMONI  Geert DE CUBBER  Rabah ATTIA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1288-1295

    Video surveillance from airborne platforms can suffer from many sources of blur, like vibration, low-end optics, uneven lighting conditions, etc. Many different algorithms have been developed in the past that aim to recover the deblurred image but often incur substantial CPU-time, which is not always available on-board. This paper shows how a “strap-on” quasi-Newton method can accelerate the convergence of existing iterative methods with little extra overhead while keeping the performance of the original algorithm, thus paving the way for (near) real-time applications using on-board processing.

  • Possibilities of Large Voltage Swing Hard-Type Oscillators Based on Series-Connected Resonant Tunneling Diodes

    Koichi MAEZAWA  Masayuki MORI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    305-310

    Hard-type oscillators for ultrahigh frequency applications were proposed based on resonant tunneling diodes (RTDs) and a HEMT trigger circuit. The hard-type oscillators initiate oscillation only after external excitation. This is advantageous for suppressing the spurious oscillation in the bias line, which is one of the most significant problems in the RTD oscillators. We first investigated a series-connected circuit of a resistor and an RTD for constructing a hard-type oscillator. We carried out circuit simulation using the practical device parameters. It was demonstrated that the stable oscillation can be obtained for such oscillators. Next, we proposed to use series-connected RTDs for the gain block of the hard-type oscillators. The series circuits of RTDs show the negative differential resistance in very narrow regions, or no regions at all, which makes impossible to use such circuits for the conventional soft-type oscillators. However, with the trigger circuit, they can be used for hard-type oscillators. We confirmed the oscillation and the bias stability of these oscillators, and also demonstrated that the voltage swing can be easily increased by increasing the number of RTDs connected in series. This is promising method to overcome the power restriction of the RTD oscillators.

  • Doppler Spread Estimation for an OFDM System with a Rayleigh Fading Channel

    Eunchul YOON  Janghyun KIM  Unil YUN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/11/13
      Vol:
    E101-B No:5
      Page(s):
    1328-1335

    A novel Doppler spread estimation scheme is proposed for an orthogonal frequency division multiplexing (OFDM) system with a Rayleigh fading channel. The proposal develops a composite power spectral density (PSD) function by averaging the multiple PSD functions computed with multiple sets of the channel frequency response (CFR) coefficients. The Doppler spread is estimated by finding the maximum location of the composite PSD quantities larger than a threshold value given by a fixed fraction of the maximum composite PSD quantity. It is shown by simulation that the proposed scheme performs better than three conventional Doppler spread estimation schemes not only in isotropic scattering environments, but also in nonisotropic scattering environments. Moreover, the proposed scheme is shown to perform well in some Rician channel environments if the Rician K-factor is small.

  • Superimposing Thermal-Infrared Data on 3D Structure Reconstructed by RGB Visual Odometry

    Masahiro YAMAGUCHI  Trong Phuc TRUONG  Shohei MORI  Vincent NOZICK  Hideo SAITO  Shoji YACHIDA  Hideaki SATO  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1296-1307

    In this paper, we propose a method to generate a three-dimensional (3D) thermal map and RGB + thermal (RGB-T) images of a scene from thermal-infrared and RGB images. The scene images are acquired by moving both a RGB camera and an thermal-infrared camera mounted on a stereo rig. Before capturing the scene with those cameras, we estimate their respective intrinsic parameters and their relative pose. Then, we reconstruct the 3D structures of the scene by using Direct Sparse Odometry (DSO) using the RGB images. In order to superimpose thermal information onto each point generated from DSO, we propose a method for estimating the scale of the point cloud corresponding to the extrinsic parameters between both cameras by matching depth images recovered from the RGB camera and the thermal-infrared camera based on mutual information. We also generate RGB-T images using the 3D structure of the scene and Delaunay triangulation. We do not rely on depth cameras and, therefore, our technique is not limited to scenes within the measurement range of the depth cameras. To demonstrate this technique, we generate 3D thermal maps and RGB-T images for both indoor and outdoor scenes.

  • Retweeting Prediction Based on Social Hotspots and Dynamic Tensor Decomposition

    Qian LI  Xiaojuan LI  Bin WU  Yunpeng XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/01/30
      Vol:
    E101-D No:5
      Page(s):
    1380-1392

    In social networks, predicting user behavior under social hotspots can aid in understanding the development trend of a topic. In this paper, we propose a retweeting prediction method for social hotspots based on tensor decomposition, using user information, relationship and behavioral data. The method can be used to predict the behavior of users and analyze the evolvement of topics. Firstly, we propose a tensor-based mechanism for mining user interaction, and then we propose that the tensor be used to solve the problem of inaccuracy that arises when interactively calculating intensity for sparse user interaction data. At the same time, we can analyze the influence of the following relationship on the interaction between users based on characteristics of the tensor in data space conversion and projection. Secondly, time decay function is introduced for the tensor to quantify further the evolution of user behavior in current social hotspots. That function can be fit to the behavior of a user dynamically, and can also solve the problem of interaction between users with time decay. Finally, we invoke time slices and discretization of the topic life cycle and construct a user retweeting prediction model based on logistic regression. In this way, we can both explore the temporal characteristics of user behavior in social hotspots and also solve the problem of uneven interaction behavior between users. Experiments show that the proposed method can improve the accuracy of user behavior prediction effectively and aid in understanding the development trend of a topic.

  • Related-Key Differential Attack on Round-Reduced Bel-T-256

    Ahmed ABDELKHALEK  Mohamed TOLBA  Amr M. YOUSSEF  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:5
      Page(s):
    859-862

    Bel-T is the national block cipher encryption standard of the Republic of Belarus. It operates on 128-bit blocks and uses either 128, 192 or 256-bit keys. Bel-T combines a Feistel network with a Lai-Massey scheme and it has a complex round function with 7 S-box layers. In this work, we use a Mixed Integer Linear Programming (MILP) approach to find a a related-key differential characteristic that extends for 4 rounds and 5 S-box layers ($4 rac{5}{7}$ rounds) with probability higher than 2-128. To build an MILP model of Bel-T that a solver can practically handle, we use a partial Difference Distribution Table (DDT) based on the Hamming weight of the input and output differences. The identified differential characteristic is used to mount a key recovery attack on 5 rounds and 6 S-box layers ($5 rac{6}{7}$ out of 8 rounds) of Bel-T-256 with 2123.28 chosen plaintexts and 2228.4 encryptions. According to the best of our knowledge, this is the first public cryptanalysis of Bel-T in the black-box attack model.

  • Reviving Identification Scheme Based on Isomorphism of Polynomials with Two Secrets: a Refined Theoretical and Practical Analysis

    Bagus SANTOSO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:5
      Page(s):
    787-798

    The isomorphism of polynomials with two secret (IP2S) problem is one candidate of computational assumptions for post-quantum cryptography. The idea of identification scheme based on IP2S is firstly introduced in 1996 by Patarin. However, the scheme was not described concretely enough and no more details are provided on how to transcribe the idea into a real-world implementation. Moreover, the security of the scheme has not been formally proven and the originally proposed security parameters are no longer secure based on the most recent research. In this paper, we propose a concrete identification scheme based on IP2S with the idea of Patarin as the starting point. We provide formal security proof of the proposed scheme against impersonation under passive attack, sequential active attack, and concurrent active attack. We also propose techniques to reduce the implementation cost such that we are able to cut the storage cost and average communication cost to an extent that under parameters for the standard 80-bit security, the scheme is implementable even on the lightweight devices in the current market.

  • Study on Driver Agent Based on Analysis of Driving Instruction Data — Driver Agent for Encouraging Safe Driving Behavior (1) —

    Takahiro TANAKA  Kazuhiro FUJIKAKE  Takashi YONEKAWA  Misako YAMAGISHI  Makoto INAGAMI  Fumiya KINOSHITA  Hirofumi AOKI  Hitoshi KANAMORI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/01/24
      Vol:
    E101-D No:5
      Page(s):
    1401-1409

    In recent years, the number of traffic accidents caused by elderly drivers has increased in Japan. However, cars are an important mode of transportation for the elderly. Therefore, to ensure safe driving, a system that can assist elderly drivers is required. We propose a driver-agent system that provides support to elderly drivers during and after driving and encourages them to improve their driving. This paper describes the prototype system and the analysis conducted of the teaching records of a human instructor, the impression caused by the instructions on a subject during driving, and subjective evaluation of the driver-agent system.

  • Critical Current of Intrinsic Josephson Junctions in Co/Au/BSCCO/Au/Co Hybrid Structure

    Kenichiro MURATA  Kazuhiro YAMAKI  Akinobu IRIE  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    391-395

    We have investigated the influence of the ferromagnet magnetization on the transport properties of intrinsic Josephson junctions in Co/Au/BSCCO/Au/Co hybrid structure under applied magnetic fields. The current-voltage characteristic at 77K in a zero-field showed the multiple quasiparticle branches with hysteresis similar to that of conventional intrinsic Josephson junctions. On the other hand, it was observed that the critical current shows a clear asymmetric field dependence with respect to the direction of the field sweep, resulting in hysteretic behavior. By comparing the field dependence of critical current with magnetization curve of the sample, we found that the critical current is strongly suppressed in the antiparallel configuration of the relative magnetization orientation of two Co layers due to the accumulation of spin-polarized quasiparticles in intrinsic Josephson junctions. The observed suppression of the critical current is as large as more than 20%.

  • A Simple Formula for Noncoherent Capacity in Highly Underspread WSSUS Channel

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1262-1269

    Channel capacity is a useful numerical index not only for grasping the upper limit of the transmission bit rate but also for comparing the abilities of various digital transmission schemes commonly used in radio-wave propagation environments because the channel capacity does not depend on specific communication methods such as modulation/demodulation schemes or error correction schemes. In this paper, modeling of the noncoherent capacity in a highly underspread WSSUS channel is investigated using a new approach. Unlike the conventional method, namely, the information theoretic method, a very straightforward formula can be obtained in a statistical manner. Although the modeling in the present study is carried out using a somewhat less rigorous approach, the result obtained is useful for roughly understanding the channel capacity in doubly selective fading environments. We clarify that the radio wave propagation parameter of the spread factor, which is the product of the Doppler spread and the delay spread, can be related quantitatively to the effective maximum signal-to-interference ratio by a simple formula. Using this model, the physical limit of wireless digital transmission is discussed from a radio wave propagation perspective.

  • Advanced DBS (Direct-Binary Search) Method for Compensating Spatial Chromatic Errors on RGB Digital Holograms in a Wide-Depth Range with Binary Holograms

    Thibault LEPORTIER  Min-Chul PARK  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    848-849

    Direct-binary search method has been used for converting complex holograms into binary format. However, this algorithm is optimized to reconstruct monochromatic digital holograms and is accurate only in a narrow-depth range. In this paper, we proposed an advanced direct-binary search method to increase the depth of field of 3D scenes reconstructed in RGB by binary holograms.

  • Phase Shift and Control in Superconducting Hybrid Structures Open Access

    Taro YAMASHITA  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    378-384

    The physics and applications of superconducting phase shifts and their control in superconducting systems are reviewed herein. The operation principle of almost all superconducting devices is related to the superconducting phase, and an efficient control of the phase is crucial for improving the performance and scalability. Furthermore, employing new methods to shift or control the phase may lead to the development of novel superconducting device applications, such as cryogenic memory and quantum computing devices. Recently, as a result of the progress in nanofabrication techniques, superconducting phase shifts utilizing π states have been realized. In this review, following a discussion of the basic physics of phase propagation and shifts in hybrid superconducting structures, interesting phenomena and device applications in phase-shifted superconducting systems are presented. In addition, various possibilities for developing electrically and magnetically controllable 0 and π junctions are presented; these possibilities are expected to be useful for future devices.

  • Dual-Polarized Phased Array Based Polarization State Modulation for Physical-Layer Secure Communication

    Zhangkai LUO  Huali WANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    740-747

    In this paper, a dual-polarized phased array based polarization state modulation method is proposed to enhance the physical-layer security in millimeter-wave (mm-wave) communication systems. Indeed, we utilize two polarized beams to transmit the two components of the polarized signal, respectively. By randomly selecting the transmitting antennas, both the amplitude and the phase of two beams vary randomly in undesired directions, which lead to the PM constellation structure distortion in side lobes, thus the transmission security is enhanced since the symbol error rate increases at the eavesdropper side. To enhance the security performance when the eavesdropper is close to the legitimate receiver and located in main beam, the artificial noise based on the orthogonal vector approach is inserted randomly between two polarized beams, which can further distort the constellation structure in undesired directions and improve the secrecy capacity in main beam as well. Finally, theoretical analysis and simulation results demonstrate the proposed method can improve the transmission security in mm-wave communication systems.

  • Characterization of Hysteresis in SOI-Based Super-Steep Subthreshold Slope FETs

    Takayuki MORI  Jiro IDA  Shota INOUE  Takahiro YOSHIDA  

     
    BRIEF PAPER

      Vol:
    E101-C No:5
      Page(s):
    334-337

    We report the characterization of hysteresis in SOI-based super-steep subthreshold slope FETs, which are conventional floating body and body-tied, and newly proposed PN-body-tied structures. We found that the hysteresis widths of the PN-body-tied structures are smaller than that of the conventional floating body and body-tied structures; this means that they are feasible for switching devices. Detailed characterizations of the hysteresis widths of each device are also reported in the study, such as dependency on the gate length and the impurity concentration.

  • Mitigating Pilot Contamination in Massive MIMO Using Cell Size Reduction

    Parfait I. TEBE  Yujun KUANG  Affum E. AMPOMA  Kwasi A. OPARE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/10/24
      Vol:
    E101-B No:5
      Page(s):
    1280-1290

    In this paper, we provide a novel solution to mitigate pilot contamination in massive MIMO technology. In the proposed approach, we consider seven copilot cells of the first layer of interfering cells of a cellular network. We derive and formulate the worst-case signal-to-interference power ratio (SIR) of a typical user in both downlink and uplink of a pilot contaminated cell. Based on the formulated SIR and other considerations of the system, the total pilot sequence length, the reliability of channel estimation within the cell, the spectral and energy efficiencies are derived and formulated in downlink. The user's transmit power and the achievable sum rate are also derived and formulated in uplink. Our results show that when the cell size is reduced the pilot contamination is significantly mitigated and hence the system performance is improved.

2921-2940hit(22683hit)