The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

19221-19240hit(22683hit)

  • Circuit Realization of a Coupled Chaotic Circuits Network and Irregular Pattern Switching Phenomenon

    Toshihisa OHIRO  Yoshinobu SETOU  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Chaos, Bifurcation and Fractal

      Vol:
    E81-A No:9
      Page(s):
    1785-1790

    In this study, a coupled chaotic circuits network is realized by real circuit elements. By using a simple circuit converting generating spatial patterns to digital signal, irregular self-switching phenomenon of the appearing patterns can be observed as real physical phenomenon.

  • The Application of Fuzzy Hopfield Neural Network to Design Better Codebook for Image Vector Quantization

    Jzau-Sheng LIN  Shao-Han LIU  Chi-Yuan LIN  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1645-1651

    In this paper, the application of an unsupervised parallel approach called the Fuzzy Hopfield Neural Network (FHNN) for vector qunatization in image compression is proposed. The main purpose is to embed fuzzy reasoning strategy into neural networks so that on-line learning and parallel implementation for codebook design are feasible. The object is to cast a clustering problem as a minimization process where the criterion for the optimum vector qunatization is chosen as the minimization of the average distortion between training vectors. In order to generate feasible results, a fuzzy reasoning strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function that is formulated and based on a basic concept commonly used in pattern classification, called the "within-class scatter matrix" principle. The suggested fuzzy reasoning strategy has been proven to allow the network to learn more effectively than the conventional Hopfield neural network. The FHNN based on the within-class scatter matrix shows the promising results in comparison with the c-means and fuzzy c-means algorithms.

  • An Efficient Active Noise Control Algorithm Based on the Lattice-Transversal Joint (LTJ) Filter Structure

    Jeong-Hyeon YUN  Young-Cheol PARK  Dae-Hee YOUN  Il-Whan CHA  

     
    LETTER-Digital Signal Processing

      Vol:
    E81-A No:8
      Page(s):
    1755-1757

    An efficient active noise control algorithm based on the lattice-transversal joint (LTJ) filter structure is presented, and applied to the active control of broadband noise in a 3-dimensional enclosure. The presented algorithm implements the filtered-x LMS within the LTJ structure obtained by cascading the lattice and transversal structures. Simulation results show that the LTJ-based noise control algorithm has fast convergence speed that is comparable to the lattice-based algorithm while its computational complexity is less demanding.

  • A Dynamic Secret Sharing Scheme Based on the Factoring and Diffie-Hellman Problems

    Wei-Bin LEE  Chin-Chen CHANG  

     
    PAPER-Information Security

      Vol:
    E81-A No:8
      Page(s):
    1733-1738

    Secret sharing schemes are good for protecting the important secrets. They are, however, inefficient if the secret shadow held by the shadowholder cannot be reused after recovering the shared secret. Traditionally, the (t, n) secret sharing scheme can be used only once, where t is the threshold value and n is the number of participants. To improve the efficiency, we propose an efficient dynamic secret sharing scheme. In the new scheme, each shadowholder holds a secret key and the corresponding public key. The secret shadow is constructed from the secret key in our scheme, while in previously proposed secret sharing schemes the secret key is the shadow. In addition, the shadow is not constructed by the shadowholder unless it is necessary, and no secure delivery channel is needed. Morever, this paper will further discuss how to change the shared secret, the threshold policy and cheater detection. Therefore, this scheme provides an efficient way to maintain important secrets.

  • Performance Analysis of a Simplified RLS Algorithm for the Estimation of Sinusoidal Signals in Additive Noise

    Yegui XIAO  Yoshiaki TADOKORO  Katsunori SHIDA  Keiya IWAMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:8
      Page(s):
    1703-1712

    Adaptive estimation of nonstationary sinusoidal signals or quasi-periodic signals in additive noise is of essential importance in many diverse engineering fields, such as communications, biomedical engineering, power systems, pitch detection in transcription and so forth. So far, Kalman filtering based techniques, recursive least square (RLS), simplified RLS (SRLS) and LMS algorithms, for examples, have been developed for this purpose. This work presents in detail a performance analysis for the SRLS algorithm proposed recently in the literature, which is used to estimate an enhanced sinusoid. Its dynamic and tracking properties, noise and lag misadjustments are developed and discussed. It is found that the SRLS estimator is biased, and its misadjustments are functions of not only the noise variance but also, unpleasantly, of the signal parameters. Simulations demonstrate the validity of the analysis. Application of the SRLS to a real-life piano sound is also given to peek at its effectiveness.

  • Image Contour Clustering by Vector Quantization on Multiscale Gradient Planes and Its Application to Image Coding

    Makoto NAKASHIZUKA  Yuji HIURA  Hisakazu KIKUCHI  Ikuo ISHII  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1652-1660

    We introduce an image contour clustering method based on a multiscale image representation and its application to image compression. Multiscale gradient planes are obtained from the mean squared sum of 2D wavelet transform of an image. The decay on the multiscale gradient planes across scales depends on the Lipshitz exponent. Since the Lipshitz exponent indicates the spatial differentiability of an image, the multiscale gradient planes represent smoothness or sharpness around edges on image contours. We apply vector quatization to the multiscale gradient planes at contours, and cluster the contours in terms of represntative vectors in VQ. Since the multiscale gradient planes indicate the Lipshitz exponents, the image contours are clustered according to its gradients and Lipshitz exponents. Moreover, we present an image recovery algorithm to the multiscale gradient planes, and we achieve the skech-based image compression by the vector quantization on the multiscale gradient planes.

  • Self-Similar Tiling Multiresolution Analysis and Self-Similar Tiling Wavelet Basis

    Mang LI  Hidemitsu OGAWA  Issei YAMASAKI  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1690-1698

    We show that characteristic functions of elements of self-similar tilings can be used as scaling functions of multiresolution analysis of L2(Rn). This multiresolution analysis is a generalization of a self-affine tiling multiresolution analysis using a characteristic function of element of self-affine tiling as a scaling function. We give a method of constructing a wavelet basis which realizes such an MRA.

  • Termination of Order-Sorted Rewriting with Non-minimal Signatures

    Yoshinobu KAWABE  Naohiro ISHII  

     
    PAPER-Software Theory

      Vol:
    E81-D No:8
      Page(s):
    839-845

    In this paper, we extend the Gnaedig's results on termination of order-sorted rewriting. Gnaedig required a condition for order-sorted signatures, called minimality, for the termination proof. We get rid of this restriction by introducing a transformation from a TRS with an arbitrary order-sorted signature to another TRS with a minimal signature, and proving that this transformation preserves termination.

  • Genetic Feature Selection for Texture Classification Using 2-D Non-Separable Wavelet Bases

    Jing-Wein WANG  Chin-Hsing CHEN  Jeng-Shyang PAN  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1635-1644

    In this paper, the performances of texture classification based on pyramidal and uniform decomposition are comparatively studied with and without feature selection. This comparison using the subband variance as feature explores the dependence among features. It is shown that the main problem when employing 2-D non-separable wavelet transforms for texture classification is the determination of the suitable features that yields the best classification results. A Max-Max algorithm which is a novel evaluation function based on genetic algorithms is presented to evaluate the classification performance of each subset of selected features. It is shown that the performance with feature selection in which only about half of features are selected is comparable to that without feature selection. Moreover, the discriminatory characteristics of texture spread more in low-pass bands and the features extracted from the pyramidal decomposition are more representative than those from the uniform decomposition. Experimental results have verified the selectivity of the proposed approach and its texture capturing characteristics.

  • Silica-Based Planar Lightwave Circuits for WDM Applications

    Katsunari OKAMOTO  Yasuyuki INOUE  Takuya TANAKA  Yasuji OHMORI  

     
    INVITED PAPER-Passive Devices for Photonic Networks

      Vol:
    E81-C No:8
      Page(s):
    1176-1186

    Planar lightwave circuits (PLCs) provide various important devices for optical wavelength division multiplexing (WDM) systems, subscriber networks and etc. This paper reviews the recent progress and future prospects of PLC technologies including arrayed-waveguide grating multiplexers, optical add/drop multiplexers, programmable dispersion equalizers and hybrid optoelectronics integration technologies.

  • Systematic Derivation of Input-Output Relation for 2-D Periodically Time-Variant Digital Filters with an Arbitrary Periodicity

    Toshiyuki YOSHIDA  Yoshinori SAKAI  

     
    LETTER

      Vol:
    E81-A No:8
      Page(s):
    1699-1702

    The authors have proposed a design method for two-dimensional (2-D) separable-denominator (SD) periodically time-variant digital filters (PTV DFs) and confirmed their superiority over 2-D time-invariant DFs. In that result, the periodicity matrix representing the periodicity of the varying filter coefficients is, however, restricted to two cases. This paper extends that idea so that the input-output relation of 2-D SD PTV DFs with an arbitrary periodicity matrix can be determined. This enables us to design wide range of 2-D PTV DFs.

  • File Allocation Designs for Distributed Multimedia Information Networks

    Akiko NAKANIWA  Hiroyuki EBARA  Hiromi OKADA  

     
    PAPER-Heterogeneous Multimedia Servers

      Vol:
    E81-B No:8
      Page(s):
    1647-1655

    In this paper, we study the optimal allocation of multimedia files in distributed network systems. In these systems, the files are shared by users connected with different servers geographically separated, and each file must be stored in at least one of servers. Users can access any files stored in any servers connected with high-speed communication networks. Copies of the files accessed frequently are to be stored in several servers that have databases. So, it is one of the most important problems how to assign the files to servers in view of costs and delays. Considering these problems in heterogeneous network environments, we present a new system model that covers wide range of multimedia network applications like VOD, CALS, and so on. In these systems, it is obvious that there is trading-off relationship between costs and delays. Our objective is to find the optimal file allocation such that the total cost is minimized subject to the total delay. We introduce a 0-1 integer programming formulation for the optimization problem, and find the optimal file allocation by solving these formulae.

  • Bitstream Scaling and Encoding Methods for MPEG Video Dedicated to Media Synchronization in a Network

    Akio ICHIKAWA  Takashi TSUSHIMA  Toshiyuki YOSHIDA  Yoshinori SAKAI  

     
    PAPER-Media Synchronization and Video Coding

      Vol:
    E81-B No:8
      Page(s):
    1637-1646

    This paper proposes a bitstream scaling technique for MPEG video for the purpose of media synchronizations. The proposed scaling technique can reduce the frame rate as well as the bit rate of an MPEG data sequence to fit them to the values specified by a synchronization system. The advantage of the proposed technique over existing scaling methods is that it is considering not only the performance of synchronization but also the picture quality of the resulting sequences. To further improve the quality of sequences scaled by the proposed method, this paper also proposes an MPEG encoding technique which sets some of the parameters suitable for the scaling. An experiment using these techniques in an actual media synchronization system has illustrated the usefulness of the proposed approach.

  • Polarization Independent Semiconductor Arrayed Waveguide Gratings Using a Deep-Ridge Waveguide Structure

    Masaki KOHTOKU  Hiroaki SANJOH  Satoshi OKU  Yoshiaki KADOTA  Yuzo YOSHIKUNI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1195-1204

    This paper describes the design of polarization insensitive InP-based arrayed waveguide gratings (AWGs), and the characteristics of fabricated devices. The use of a deep-ridge waveguide structure made the fabrication of compact polarization-insensitive AWGs possible. As a result, a low crosstalk (-30 dB) 8-channel AWG and a large-scale (64 channel) AWG with 50 GHz channel spacing could be fabricated. An integrated circuit containing an 8-channel AWG with photodetectors is also described.

  • Optical Add/Drop Filter with Flat Top Spectral Response Based on Gratings Photoinduced on Planar Waveguides

    Hisato UETSUKA  Hideaki ARAI  Korenori TAMURA  Hiroaki OKANO  Ryouji SUZUKI  Seiichi KASHIMURA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1205-1208

    High- and low-reflection Bragg gratings with a flat-top spectral response free from ripples are proposed. Add/drop filters are created based on gratings photoinduced on planar waveguides by using the new design schemes. The measured spectral responses for the high and low reflection gratings are in good agreement with the calculated ones, and show the flat-top spectral responses.

  • Wide-Wavelength-Range Modulator-Integrated DFB Laser Diodes Fabricated on a Single Wafer

    Masayuki YAMAGUCHI  Koji KUDO  Hiroyuki YAMAZAKI  Masashige ISHIZAKA  Tatsuya SASAKI  

     
    INVITED PAPER-Active Devices for Photonic Networks

      Vol:
    E81-C No:8
      Page(s):
    1219-1224

    Different-wavelength distributed feedback laser diodes with integrated modulators (DFB/MODs) are fabricated on a single wafer operate at wavelengths from 1. 52 µm to 1. 59 µm, a range comparable to the expanded Er-doped fiber amplifier gain band. A newly developed field-size-variation electron-beam lithography enables grating pitch to be controlled to within 0. 0012 nm, and narrow-stripe selective metal-organic vapor-phase epitaxy is used to control the bandgap wavelength of laser active layers and modulator absorption layers for each channel. The channel spacing of fabricated 40-channel DFB/MODs is 214 GHz in average with a standard deviation of 0. 39 nm. Very uniform lasing and modulating performances are achieved, such as threshold currents about 10 mA and extinction ratios about 20 dB at -2 V in average. These devices have been used to demonstrate 2. 5-Gb/s transmission over 600 km of a normal fiber with a power penalty of less than 1 dB.

  • Polarization Independent Semiconductor Optical Amplifier Gate and Its Application in WDM Systems

    Toshio ITO  Naoto YOSHIMOTO  Osamu MITOMI  Katsuaki MAGARI  Ikuo OGAWA  Fumihiro EBISAWA  Yasufumi YAMADA  Yuji HASUMI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1237-1244

    We studied 2 types of polarization insensitive semiconductor optical amplifier (SOA) gates for use in wavelength division multiplexing (WDM) applications: 1) a low operation current SOA gate with a small and square bulk active region but without spot-size converters and 2) a multi channel SOA gate array with tapered waveguide spot-size converters (SS-SOA) on both sides. The low operation current SOA gate provided a very low current for fiber-to-fiber loss-less operation (5. 4-7. 0 mA) and a high extinction ratio (>30 dB) over a wide wavelength range (1530-1580 nm). For multi channel array assembling, the SS is indispensable. The 4-channel SS-SOA gate array was assembled on a planar lightwave circuit (PLC) platform for the first time. The gain characteristics of each channel were very similar and a low fiber-to-fiber loss-less current of 33 mA and a high extinction ratio of nearly 40 dB were achieved in all channels. The polarization dependence was less than 1 dB. Using the fully packaged 4-channel hybrid gate array module (a 4 channel SS-SOA on PLC platform), an ultra-wide-band (1530-1600 nm) high speed wavelength selector was successfully demonstrated. Both rise- and fall-times were less than 1 ns, which makes the wavelength selector suitable for high-speed optical packet switching. Electrical and optical interference between channels were negligible.

  • Gain-Flattened Hybrid Silica-Based Er-Doped Fiber Amplifiers Designed for More Than 25 nm Optical Bandwidth

    Motoki KAKUI  Tomonori KASHIWADA  Masayuki SHIGEMATSU  Masashi ONISHI  Masayuki NISHIMURA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1285-1292

    Wavelength-division multiplexing (WDM) transmission systems have been intensely researched in order to increase the transmission capacity. One of the most important key devices for this use is erbium-doped fiber amplifiers (EDFAs) which feature a flattened gain, a high pumping efficiency and a low noise figure (NF), simultaneously. To fulfill these requirements, hybrid silica-based EDFAs (EDSFAs) composed of Al codoped and P/Al codoped EDSFs have been proposed so far. They are also attractive from the viewpoint of productivity, reliability, and cost-effectiveness. On the other hand, the optical bandwidth has been around 15 nm at most. In this paper, we have proposed newly designed hybrid EDSFAs for more than 25 nm optical bandwidth. The gain peak around 1. 53 µm can be suppressed through the saturation degree control in both EDSFs. The remaining obstacle is the diparound 1. 54 µm, which results in the relative gain non-uniformity of 10. 7% over the wavelength range from 1535 to 1560 nm. Owing to the glass composition optimization, the relative gain non-uniformity has been reduced to 5.8% without gain equalizers(GEQs), which is comparable to that of EDFFAs. As another solution, the hybrid EDSFA including two-stage Fabry Perot etalons as the GEQ has been proposed. In this configuration, the hybrid EDSFA has been designed to exhibit the gain profile similar to the summation of two sinusoidal curves, and the relative gain non-uniformity has been reduced to 3. 7%, which is almost equal to that of the hybrid EDFAs composed of EDSF and EDFF. Moreover, it has been demonstrated that newly developed hybrid EDSFAs exhibit a higher pumping efficiency and a lower NF than EDFFAs and hybrid EDSF/EDFFAs.

  • A Characterization of Infinite Binary Sequences with Partial Randomness

    Hiroaki NAGOYA  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E81-D No:8
      Page(s):
    801-805

    K-randomness and Martin-Lof randomness are among many formalizations of randomness of infinite sequences, and these two are known to be equivalent. We can naturally modify the former to the definition of partial randomness. However, it is not obvious how to modify the latter to the definition of partial randomness. In this paper, we show that we can modify Martin-Lof randomness to a definition of partial randomness that is equivalent to the definition obtained by naturally modifying K-randomness. The basic idea is to modify the notion of measures used in the definition of Martin-Lof tests.

  • Elemental Universality of Sets of Logic Devices

    Kosaku INAGAKI  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E81-D No:8
      Page(s):
    767-772

    This paper is concerned with a concept called universality or completeness of sets of logic devices. Universality characterizes sets of logic devices which can be used for the construction of arbitrary logic circuits. The elemental universality proposed here is the most general condition of universality which covers logic devices with/without delay time and combinational/sequential circuits. The necessary and sufficient condition of elemental universality shows that nonlinearity and nonmonotonicity are essential conditions for the realization of various digital mechanisms.

19221-19240hit(22683hit)