The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

3081-3100hit(5900hit)

  • Filtering in Generalized Signal-Dependent Noise Model Using Covariance Information

    Seiichi NAKAMORI  María J. GARCIA-LIGERO  Aurora HERMOSO-CARAZO  Josefa LINARES-PEREZ  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:3
      Page(s):
    809-817

    In this paper, we propose a recursive filtering algorithm to restore monochromatic images which are corrupted by general dependent additive noise. It is assumed that the equation which describes the image field is not available and a filtering algorithm is obtained using the information provided by the covariance functions of the signal, noise that affects the measurement equation, and the fourth-order moments of the signal. The proposed algorithm is obtained by an innovation approach which provides a simple derivation of the least mean-squared error linear estimators. The estimation of the grey level in each spatial coordinate is made taking into account the information provided by the grey levels located on the row of the pixel to be estimated. The proposed filtering algorithm is applied to restore images which are affected by general signal-dependent additive noise.

  • A Subsampling-Based Digital Image Watermarking Scheme Resistant to Permutation Attack

    Chuang LIN  Jeng-Shyang PAN  Chia-An HUANG  

     
    LETTER-Image

      Vol:
    E91-A No:3
      Page(s):
    911-915

    The letter proposes a novel subsampling-based digital image watermarking scheme resisting the permutation attack. The subsampling-based watermarking schemes have drawn great attention for their convenience and effectiveness in recent years, but the traditional subsampling-based watermarking schemes are very vulnerable to the permutation attack. In this letter, the watermark information is embedded in the average values of the 1-level DWT coefficients to resist the permutation attack. The concrete embedding process is achieved by the quantization-based method. Experimental results show that the proposed scheme can resist not only the permutation attack but also some common image processing attacks.

  • A Conservative Framework for Safety-Failure Checking

    Frederic BEAL  Tomohiro YONEDA  Chris J. MYERS  

     
    PAPER-Verification and Timing Analysis

      Vol:
    E91-D No:3
      Page(s):
    642-654

    We present a new framework for checking safety failures. The approach is based on the conservative inference of the internal states of a system by the observation of the interaction with its environment. It is based on two similar mechanisms : forward implication, which performs the analysis of the consequences of an input applied to the system, and backward implication, that performs the same task for an output transition. While being a very simple approach, it is general and we believe it can yield efficient algorithms in different safety-failure checking problems. As a case study, we have applied this framework to an existing problem, the hazard checking in (speed-independent) asynchronous circuits. Our new methodology yields an efficient algorithm that performs better or as well as all existing algorithms, while being more general than the fastest one.

  • An LMI Approach to Computing Delayed Perturbation Bounds for Stabilizing Receding Horizon H Controls

    ChoonKi AHN  SooHee HAN  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:3
      Page(s):
    879-882

    This letter presents new delayed perturbation bounds (DPBs) for stabilizing receding horizon H∞ control (RHHC). The linear matrix inequality (LMI) approach to determination of DPBs for the RHHC is proposed. We show through a numerical example that the RHHC can guarantee an H∞ norm bound for a larger class of systems with delayed perturbations than conventional infinite horizon H∞ control (IHHC).

  • Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    Tran HUY DAT  Kazuya TAKEDA  Fumitada ITAKURA  

     
    PAPER-Speech Enhancement

      Vol:
    E91-D No:3
      Page(s):
    439-447

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  • MIMO Systems in the Presence of Feedback Delay

    Kenichi KOBAYASHI  Tomoaki OHTSUKI  Toshinobu KANEKO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    829-836

    Multiple-Input Multiple-Output (MIMO) systems can achieve high data-rate and high capacity transmission. In MIMO systems, eigen-beam space division multiplexing (E-SDM) that achieves much higher capacity by weighting at the transmitter based on feedback channel state information (CSI) has been studied. Early studies for E-SDM have assumed perfect CSI at the transmitter. However, in practice, the CSI fed back to the transmitter from the receiver becomes outdated due to the time-varying nature of the channels and feedback delay. Therefore, an outdated E-SDM cannot achieve the full performance possible. In this paper, we evaluate the performance of E-SDM with methods for reducing performance degradation due to feedback delay. We use three methods: 1) method that predicts CSI at future times when it will be used and feeds the predicted CSI back to the transmitter (denoted hereafter as channel prediction); 2), 3) method that uses the receive weight based on zero-forcing (ZF) or minimum mean square error (MMSE) criterion instead of those based on singular value decomposition (SVD) criterion (denoted hereafter as ZF or MMSE-based receive weight). We also propose methods that combine channel prediction with ZF or MMSE-based receive weight. Simulation results show that bit error rate (BER) degradation of E-SDM in the presence of feedback delay is reduced by using methods for reducing performance degradation due to feedback delay. We also show that methods that combine channel prediction with ZF or MMSE-based receive weight can achieve good BER even when the large feedback delay exists.

  • Omnidirectional Audio-Visual Talker Localization Based on Dynamic Fusion of Audio-Visual Features Using Validity and Reliability Criteria

    Yuki DENDA  Takanobu NISHIURA  Yoichi YAMASHITA  

     
    PAPER-Applications

      Vol:
    E91-D No:3
      Page(s):
    598-606

    This paper proposes a robust omnidirectional audio-visual (AV) talker localizer for AV applications. The proposed localizer consists of two innovations. One of them is robust omnidirectional audio and visual features. The direction of arrival (DOA) estimation using an equilateral triangular microphone array, and human position estimation using an omnidirectional video camera extract the AV features. The other is a dynamic fusion of the AV features. The validity criterion, called the audio- or visual-localization counter, validates each audio- or visual-feature. The reliability criterion, called the speech arriving evaluator, acts as a dynamic weight to eliminate any prior statistical properties from its fusion procedure. The proposed localizer can compatibly achieve talker localization in a speech activity and user localization in a non-speech activity under the identical fusion rule. Talker localization experiments were conducted in an actual room to evaluate the effectiveness of the proposed localizer. The results confirmed that the talker localization performance of the proposed AV localizer using the validity and reliability criteria is superior to that of conventional localizers.

  • Image Segmentation Using Fuzzy Clustering with Spatial Constraints Based on Markov Random Field via Bayesian Theory

    Xiaohe LI  Taiyi ZHANG  Zhan QU  

     
    PAPER-Image Processing

      Vol:
    E91-A No:3
      Page(s):
    723-729

    Image segmentation is an essential processing step for many image analysis applications. In this paper, a novel image segmentation algorithm using fuzzy C-means clustering (FCM) with spatial constraints based on Markov random field (MRF) via Bayesian theory is proposed. Due to disregard of spatial constraint information, the FCM algorithm fails to segment images corrupted by noise. In order to improve the robustness of FCM to noise, a powerful model for the membership functions that incorporates local correlation is given by MRF defined through a Gibbs function. Then spatial information is incorporated into the FCM by Bayesian theory. Therefore, the proposed algorithm has both the advantages of the FCM and MRF, and is robust to noise. Experimental results on the synthetic and real-world images are given to demonstrate the robustness and validity of the proposed algorithm.

  • Fluxonics and Superconducting Electronics in Europe

    Horst ROGALLA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    272-279

    Superconductivity and superconducting electronics have quite a prominent place in the European research environment and can look back onto a successful history. In recent years the European Framework programs helped to enhance the interaction between the different national research institutions, universities and industry. For applications of superconductivity this was accomplished by the European Network of Excellence SCENET and its sister organization ESAS. In this context a virtual European foundry network was established (Fluxonics), which forms a platform for the superconducting electronics activities in Europe and realizes support for the design and the fabrication of superconducting circuits for research laboratories and industry. Lately quite some development on the digital side and the cooling of superconducting electronics devices has taken place in Europe; most of it within the Fluxonics network. Some of these advances will be reported in this overview article.

  • Superconductor Digital-RF Receiver Systems

    Oleg A. MUKHANOV  Dmitri KIRICHENKO  Igor V. VERNIK  Timur V. FILIPPOV  Alexander KIRICHENKO  Robert WEBBER  Vladimir DOTSENKO  Andrei TALALAEVSKII  Jia Cao TANG  Anubhav SAHU  Pavel SHEVCHENKO  Robert MILLER  Steven B. KAPLAN  Saad SARWANA  Deepnarayan GUPTA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    306-317

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4 K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ~30 GHz clock frequencies.

  • Boltzmann Machines with Identified States

    Masaki KOBAYASHI  

     
    LETTER-Nonlinear Problems

      Vol:
    E91-A No:3
      Page(s):
    887-890

    Learning for boltzmann machines deals with each state individually. If given data is categorized, the probabilities have to be distributed to each state, not to each catetory. We propose boltzmann machines identifying the states in the same categories. Boltzmann machines with hidden units are the special cases. Boltzmann learning and em algorithm are effective learning methods for boltzmann machines. We solve boltzmann learning and em algorithm for the proposed models.

  • Designing Algebraic Trellis Code as a New Fixed Codebook Module for ACELP Coder

    Jakyong JUN  Sangwon KANG  Thomas R. FISCHER  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E91-B No:3
      Page(s):
    972-974

    In this paper, a block-constrained trellis coded quantization (BC-TCQ) algorithm is combined with an algebraic codebook to produce an algebraic trellis code (ATC) to be used in ACELP coding. In ATC, the set of allowed algebraic codebook pulse positions is expanded, and the expanded set is partitioned into subsets of pulse positions; the trellis branches are labeled with these subsets. The list Viterbi algorithm (LVA) is used to select the excitation codevector. The combination of an ATC codebook and LVA trellis search algorithm is denoted as an ATC-LVA block code. The ATC-LVA block code is used as the fixed codebook of the AMR-WB 8.85 kbps mode, reducing complexity compared to the conventional algebraic codebook.

  • Robust Speech Recognition by Model Adaptation and Normalization Using Pre-Observed Noise

    Satoshi KOBASHIKAWA  Satoshi TAKAHASHI  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    422-429

    Users require speech recognition systems that offer rapid response and high accuracy concurrently. Speech recognition accuracy is degraded by additive noise, imposed by ambient noise, and convolutional noise, created by space transfer characteristics, especially in distant talking situations. Against each type of noise, existing model adaptation techniques achieve robustness by using HMM-composition and CMN (cepstral mean normalization). Since they need an additive noise sample as well as a user speech sample to generate the models required, they can not achieve rapid response, though it may be possible to catch just the additive noise in a previous step. In the previous step, the technique proposed herein uses just the additive noise to generate an adapted and normalized model against both types of noise. When the user's speech sample is captured, only online-CMN need be performed to start the recognition processing, so the technique offers rapid response. In addition, to cover the unpredictable S/N values possible in real applications, the technique creates several S/N HMMs. Simulations using artificial speech data show that the proposed technique increased the character correct rate by 11.62% compared to CMN.

  • Canonicalization of Feature Parameters for Robust Speech Recognition Based on Distinctive Phonetic Feature (DPF) Vectors

    Mohammad NURUL HUDA  Muhammad GHULAM  Takashi FUKUDA  Kouichi KATSURADA  Tsuneo NITTA  

     
    PAPER-Feature Extraction

      Vol:
    E91-D No:3
      Page(s):
    488-498

    This paper describes a robust automatic speech recognition (ASR) system with less computation. Acoustic models of a hidden Markov model (HMM)-based classifier include various types of hidden factors such as speaker-specific characteristics, coarticulation, and an acoustic environment, etc. If there exists a canonicalization process that can recover the degraded margin of acoustic likelihoods between correct phonemes and other ones caused by hidden factors, the robustness of ASR systems can be improved. In this paper, we introduce a canonicalization method that is composed of multiple distinctive phonetic feature (DPF) extractors corresponding to each hidden factor canonicalization, and a DPF selector which selects an optimum DPF vector as an input of the HMM-based classifier. The proposed method resolves gender factors and speaker variability, and eliminates noise factors by applying the canonicalzation based on the DPF extractors and two-stage Wiener filtering. In the experiment on AURORA-2J, the proposed method provides higher word accuracy under clean training and significant improvement of word accuracy in low signal-to-noise ratio (SNR) under multi-condition training compared to a standard ASR system with mel frequency ceptral coeffient (MFCC) parameters. Moreover, the proposed method requires a reduced, two-fifth, Gaussian mixture components and less memory to achieve accurate ASR.

  • Experimental Evaluation of the Super Sweep Spectrum Analyzer

    Masao NAGANO  Toshio ONODERA  Mototaka SONE  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:3
      Page(s):
    782-790

    A sweep spectrum analyzer has been improved over the years, but the fundamental method has not been changed before the 'Super Sweep' method appeared. The 'Super Sweep' method has been expected to break the limitation of the conventional sweep spectrum analyzer, a limit of the maximum sweep rate which is in inverse proportion to the square of the frequency resolution. The superior performance of the 'Super Sweep' method, however, has not been experimentally proved yet. This paper gives the experimental evaluation on the 'Super Sweep' spectrum analyzer, of which theoretical concepts have already been presented by the authors of this paper. Before giving the experimental results, we give complete analysis for a sweep spectrum analyzer and express the principle of the super-sweep operation with a complete set of equations. We developed an experimental system whose components operated in an optimum condition as the spectrum analyzer. Then we investigated its properties, a peak level reduction and broadening of the frequency resolution of the measured spectrum, by changing the sweep rate. We also confirmed that the experimental system satisfactorily detected the spectrum at least 30 times faster than the conventional method and the sweep rate was in proportion to the bandwidth of the base band signal to be analyzed. We proved that the 'Super Sweep' method broke the restriction of the sweep rate put on a conventional sweep spectrum analyzer.

  • An Effective Load Balancing Scheme for 3D Texture-Based Sort-Last Parallel Volume Rendering on GPU Clusters

    Won-Jong LEE  Vason P. SRINI  Woo-Chan PARK  Shigeru MURAKI  Tack-Don HAN  

     
    PAPER-Computer Graphics

      Vol:
    E91-D No:3
      Page(s):
    846-856

    We present an adaptive dynamic load balancing scheme for 3D texture based sort-last parallel volume rendering on a PC cluster equipped with GPUs. Our scheme exploits not only task parallelism but also data parallelism during rendering by combining the hierarchical data structures (octree and parallel BSP tree) in order to skip empty regions and distribute proper workloads to rendering nodes. Our scheme can also conduct a valid parallel rendering and image compositing in visibility order by employing a 3D clustering algorithm. To alleviate the imbalance when the transfer function is changed, a load rebalancing is inexpensively supported by exchanging only needed data. A detailed performance analysis is provided and scaling characteristics of our scheme are discussed. These show that our scheme can achieve significant performance gains by increasing parallelism and decreasing synchronizing costs compared to the traditional static distribution schemes.

  • A Feasibility Study of Fuzzy FES Controller Based on Cycle-to-Cycle Control: An Experimental Test of Knee Extension Control

    Takashi WATANABE  Tomoya MASUKO  Achmad ARIFIN  Makoto YOSHIZAWA  

     
    LETTER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E91-D No:3
      Page(s):
    865-868

    Functional Electrical Stimulation (FES) can be effective in assisting or restoring paralyzed motor functions. The purpose of this study is to examine experimentally the fuzzy controller based on cycle-to-cycle control for FES-induced gait. A basic experimental test was performed on controlling maximum knee extension angle with normal subjects. In most of control trials, the joint angle was controlled well compensating changes in muscle responses to electrical stimulation. The results show that the fuzzy controller would be practical in clinical applications of gait control by FES. An automatic parameter tuning would be required practically for quick responses in reaching the target and in compensating the change in muscle responses without causing oscillating responses.

  • Linear Precoding of Unitary Space-Time Code for GLRT Decoder

    Yongliang GUO  Shihua ZHU  Zhonghua LIANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:2
      Page(s):
    695-699

    For unitary space-time code (USTC), the impact of spatial correlation on error performance is investigated. A tighter and simpler upper bound is derived for generalized likelihood ratio test decoder. We establish that the spatial correlation does not change the diversity gain, whereas it degrades the error performance of USTC. Motivated by the precoding of space-time block code, we designed a precoder for USTC to handle the case of the joint transmit-receive correlation. Numerical results show that the degradation in performance due to spatial correlation can be considerably compensated by the proposed algorithm.

  • Endoscopic Feature Tracking and Scale-Invariant Estimation of Soft-Tissue Structures

    Chia-Hsiang WU  Yung-Nien SUN  Yi-Chiao CHEN  Chien-Chen CHANG  

     
    PAPER-Biological Engineering

      Vol:
    E91-D No:2
      Page(s):
    351-360

    In this study, we introduce a software pipeline to track feature points across endoscopic video frames. It deals with the common problems of low contrast and uneven illumination that afflict endoscopic imaging. In particular, irregular feature trajectories are eliminated to improve quality. The structure of soft tissue is determined by an iterative factorization method based on collection of tracked features. A shape updating mechanism is proposed in order to yield scale-invariant structures. Experimental results show that the tracking method produced good tracking performance and increased the number of tracked feature trajectories. The real scale and structure of the target scene was successfully estimated, and the recovered structure is more accuracy than the conventional method.

  • New Inter-Cluster Proximity Index for Fuzzy c-Means Clustering

    Fan LI  Shijin DAI  Qihe LIU  Guowei YANG  

     
    LETTER-Data Mining

      Vol:
    E91-D No:2
      Page(s):
    363-366

    This letter presents a new inter-cluster proximity index for fuzzy partitions obtained from the fuzzy c-means algorithm. It is defined as the average proximity of all possible pairs of clusters. The proximity of each pair of clusters is determined by the overlap and the separation of the two clusters. The former is quantified by using concepts of Fuzzy Rough sets theory and the latter by computing the distance between cluster centroids. Experimental results indicate the efficiency of the proposed index.

3081-3100hit(5900hit)