The search functionality is under construction.

Keyword Search Result

[Keyword] actuator(38hit)

1-20hit(38hit)

  • Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs

    Kazuya TADA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/14
      Vol:
    E106-C No:6
      Page(s):
    232-235

    An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.

  • Effect of Temperature on Electrical Resistance-Length Characteristic of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Takashi YOSHIDA  

     
    BRIEF PAPER

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:6
      Page(s):
    192-193

    It is found that the electrical resistance-length characteristic in an electroactive supercoiled polymer artificial muscle strongly depends on the temperature. This may come from the thermal expansion of coils in the artificial muscle, which increases the contact area of neighboring coils and results in a lower electrical resistance at a higher temperature. On the other hand, the electrical resistance-length characteristic collected during electrical driving seriously deviates from those collected at constant temperatures. Inhomogeneous heating during electrical driving seems to be a key for the deviation.

  • S-Shaped Nonlinearity in Electrical Resistance of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Masaki KAKU  

     
    BRIEF PAPER-Organic Molecular Electronics

      Pubricized:
    2019/08/05
      Vol:
    E103-C No:2
      Page(s):
    59-61

    S-shaped nonlinearity is found in the electrical resistance-length relationship in an electroactive supercoiled polymer artificial muscle. The modulation of the electrical resistance is mainly caused by the change in the contact condition of coils in the artificial muscle upon deformation. A mathematical model based on logistic function fairly reproduces the experimental data of electrical resistance-length relationship.

  • A Dynamic Channel Switching for ROD-SAN Open Access

    Daiki NOBAYASHI  Yutaka FUKUDA  Kazuya TSUKAMOTO  Takeshi IKENAGA  

     
    PAPER

      Pubricized:
    2019/02/21
      Vol:
    E102-D No:5
      Page(s):
    920-931

    Wireless sensor and actuator networks (WSANs) are expected to become key technologies supporting machine-to-machine (M2M) communication in the Internet of things (IoT) era. However, sensors must be able to provide high demand response (DR) levels despite severely limited battery power. Therefore, as part of efforts to achieve a high DR, we are working on research and development related to radio-on-demand sensor and actuator networks (ROD-SANs). ROD-SAN nodes are equipped with wake-up receivers that allow all nodes to stay in sleep mode for a long period of time, and transmit only after the receiver receives a wake-up signal. In addition, sender nodes can direct the receiver nodes to switch communication channels because the wake-up signal also includes information on the channel to use for communication between each other. However, as the number of nodes utilizing the same channel increases, frequent packet collisions occur, thereby degrading response performance. To reduce packet collisions, we propose an own-channel-utilization based channel switching (OCS) scheme, which is a modification of the average-channel-utilization based switching (ACS) as our previous works. The OCS scheme decides whether or not to switch channels based on a probability value that considers not only average-channel utilization of nearby nodes but also own-channel utilization. This approach permits node switching to other channels by considering the overall utilization states of all channels. In this paper, based on simulations, we show that our scheme can improve the delivery ratio by approximately 15% rather than ACS scheme.

  • Flexible and Printable Phase Shifter with Polymer Actuator for 12-GHz Band

    Fumio SATO  Michio YOKOYAMA  Yudai USAMI  Kentaro YAZAWA  Takao KUKI  Shizuo TOKITO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    767-774

    The authors have proposed a new type of flexible and printable 12GHz-band phase shifter using polymer actuator for the first time. Polymer bending actuator was used as a termination device of a reflection-type 3-dB, 90° hybrid coupler as the phase-shift control unit which controls the electrical length of the waveguide for microwave signals by the applied bias voltage. The microstrip line circuit of the device has been fabricated using low-cost screen printing method. Polymer bending actuator having three-layer stacking structure, in which an ionic liquid electrolyte layer is sandwiched with two conductive network composite layers, was formed by wet processes. The authors have confirmed that the phase shift could be controlled in analog by low driving voltages of 2-7 V for the actuator with a insertion loss of 2.73 dB. This phase shifter can be integrated with flexible patch antenna and the current flexible polymer electronics devices such as transistors.

  • ROD-SAN: Energy-Efficient and High-Response Wireless Sensor and Actuator Networks Employing Wake-Up Receiver Open Access

    Hiroyuki YOMO  Takahiro KAWAMOTO  Kenichi ABE  Yuichiro EZURE  Tetsuya ITO  Akio HASEGAWA  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1998-2008

    Wireless sensor and actuator networks (WSANs) are required to achieve both energy-efficiency and low-latency in order to prolong the network lifetime while being able to quickly respond to actuation commands transmitted based on the real-time sensing data. These two requirements are in general in a relationship of trade-off when each node operates with well-known duty-cycling modes: nodes need to make their radio interfaces (IFs) frequently active in order to promptly detect the communication requests from the other nodes. One approach to break this inherent trade-off, which has been actively studied in recent literature of wireless sensor networks (WSNs), is the introduction of wake-up receiver that is installed into each node and used only for detecting the communication requests. The main radio IF in each node is woken up only when needed, i.e., in an on-demand manner, through a wake-up message received by the wake-up receiver. In this paper, we introduce radio-on-demand sensor and actuator networks (ROD-SAN) where the concept of wake-up receiver is applied to realize on-demand WSANs. We first evaluate data collection rate, packet delivery latency, and energy-efficiency of ROD-SAN and duty-cycling modes defined in IEEE 802.15.4e by computer simulations. Then, we present our test-bed implementation of ROD-SAN including all protocols from the lowest layer of wake-up signaling to the application layer offering the functionalities of information monitoring and networked control. Finally, we show experimental results obtained through our field trial in which 20 nodes are deployed in an outdoor area with the scale of 450m × 200m. The numerical results obtained by computer simulations and experiments confirm the effectiveness of ROD-SAN to realize energy-efficient and high-response WSANs.

  • Actuator-Control Circuit Based on OTFTs and Flow-Rate Estimation for an All-Organic Fluid Pump

    Lei CHEN  Tapas Kumar MAITI  Hidenori MIYAMOTO  Mitiko MIURA-MATTAUSCH  Hans Jürgen MATTAUSCH  

     
    PAPER-Systems and Control

      Vol:
    E99-A No:4
      Page(s):
    798-805

    In this paper, we report the design of an organic thin-film transistor (OTFT) driver circuit for the actuator of an organic fluid pump, which can be integrated in a portable-size fully-organic artificial lung. Compared to traditional pump designs, lightness, compactness and scalability are achieved by adopting a creative pumping mechanism with a completely organic-material-based system concept. The transportable fluid volume is verified to be flexibly adjustable, enabling on-demand controllability and scalability of the pump's fluid-flow rate. The simulations, based on an accurate surface-potential OTFT compact model, demonstrate that the necessary driving waveforms can be efficiently generated and adjusted to the actuator requirements. At the actuator-driving-circuit frequency of 0.98Hz, an all-organic fluid pump with 40cm length and 0.2cm height is able to achieve a flow rate of 0.847L/min, which satisfies the requirements for artificial-lung assist systems to a weakened normal lung.

  • Ambient Sensor Network Technologies for Global Connectivity Support Open Access

    Masayoshi OHASHI  Nao KAWANISHI  

     
    INVITED PAPER

      Vol:
    E98-B No:9
      Page(s):
    1733-1740

    This paper discusses the core ambient sensor network (ASN) technologies in view of their support for global connectivity. First, we enumerate ASN services and use cases and then discuss the underlying core technologies, in particular, the importance of the RESTful approach for ensuring global accessibility to sensors and actuators. We also discuss several profile-handling technologies for context-aware services. Finally, we envisage the ASN trends, including our current work for cognitive behavior therapy (CBT) in mental healthcare. We strongly believe that ASN services will become widely available in the real world and an integral part of daily life and society in the near future.

  • A Hybrid Trust Management Framework for Wireless Sensor and Actuator Networks in Cyber-Physical Systems Open Access

    Ruidong LI  Jie LI  Hitoshi ASAEDA  

     
    INVITED PAPER

      Vol:
    E97-D No:10
      Page(s):
    2586-2596

    To secure a wireless sensor and actuator network (WSAN) in cyber-physical systems, trust management framework copes with misbehavior problem of nodes and stimulate nodes to cooperate with each other. The existing trust management frameworks can be classified into reputation-based framework and trust establishment framework. There, however, are still many problems with these existing trust management frameworks, which remain unsolved, such as frangibility under possible attacks. To design a robust trust management framework, we identify the attacks to the existing frameworks, present the countermeasures to them, and propose a hybrid trust management framework (HTMF) to construct trust environment for WSANs in the paper. HTMF includes second-hand information and confidence value into trustworthiness evaluation and integrates the countermeasures into the trust formation. We preform extensive performance evaluations, which show that the proposed HTMF is more robust and reliable than the existing frameworks.

  • Reconfiguration-Based Fault Tolerant Control of Dynamical Systems: A Control Reallocation Approach

    Ali MORADI AMANI  Ahmad AFSHAR  Mohammad Bagher MENHAJ  

     
    PAPER-Dependable Computing

      Vol:
    E95-D No:4
      Page(s):
    1074-1083

    In this paper, the problem of control reconfiguration in the presence of actuator failure preserving the nominal controller is addressed. In the actuator failure condition, the processing algorithm of the control signal should be adapted in order to re-achieve the desired performance of the control loop. To do so, the so-called reconfiguration block, is inserted into the control loop to reallocate nominal control signals among the remaining healthy actuators. This block can be either a constant mapping or a dynamical system. In both cases, it should be designed so that the states or output of the system are fully recovered. All these situations are completely analysed in this paper using a novel structural approach leading to some theorems which are supported in each section by appropriate simulations.

  • CCDM: Ladder-Logic Programming for Wireless Sensors and Actuators with Central Controller-Based Device Management

    Hideya OCHIAI  Hiroshi ESAKI  

     
    PAPER

      Vol:
    E94-B No:8
      Page(s):
    2208-2215

    This paper proposes ladder-logic programming model for sensor actuator networks. We also demonstrate optimized operations of them with central controller-based device management (CCDM) architecture. A wireless sensor actuator network consists of distributed wireless nodes, and implementing data streams and data processors onto these wireless nodes has been challenging. System programmers have to describe their instructions by a programming language, and data processors must be placed so that it optimizes, for example, total network traffic. The ladder-logic model enables the programming of them, and CCDM makes various types of optimizations feasible, including the optimization of network traffic, delivery latency, load-balancing and fault-tolerance even though these algorithms are not lightweight. In this paper, we focus on traffic reduction case, and propose two moderately complex algorithms. The experiment has shown that CCDM achieves optimizations even with such moderately complex algorithms.

  • NerveNet: A Regional Platform Network for Context-Aware Services with Sensors and Actuators Open Access

    Masugi INOUE  Masaaki OHNISHI  Chao PENG  Ruidong LI  Yasunori OWADA  

     
    INVITED PAPER

      Vol:
    E94-B No:3
      Page(s):
    618-629

    Wireless access networks of the future could provide a variety of context-aware services with the use of sensor information in order to solve regional social problems and improve the quality of residents' lives as a part of the regional infrastructure. NerveNet is a conceptual regional wireless access platform in which multiple service providers provide their own services with shared use of the network and sensors, enabling a range of context-aware services. The platform acts like a human nervous system. Densely located, interconnected access points with databases and data processing units will provide mobility to terminals without a location server and enable secure sensor data transport on a highly reliable, managed mesh network. This paper introduces the motivations, concept, architecture, system configuration, and preliminary performance results of NerveNet.

  • DIWSAN: Distributed Intelligent Wireless Sensor and Actuator Network for Heterogeneous Environment

    Cheng-Min LIN  Jyh-Horng LIN  Jen-Cheng CHIU  

     
    PAPER-Information Network

      Vol:
    E93-D No:9
      Page(s):
    2534-2543

    In a WSAN (Wireless Sensor and Actuator Network), most resources, including sensors and actuators, are designed for certain applications in a dedicated environment. Many researchers have proposed to use of gateways to infer and annotate heterogeneous data; however, such centralized methods produce a bottlenecking network and computation overhead on the gateways that causes longer response time in activity processing, worsening performance. This work proposes two distribution inference mechanisms: regionalized and sequential inference mechanisms to reduce the response time in activity processing. Finally, experimental results for the proposed inference mechanisms are presented, and it shows that our mechanisms outperform the traditional centralized inference mechanism.

  • Calculation and Analysis of Dynamic Characteristics of Multilink Permanent Magnetic Actuator in Vacuum Circuit Breaker

    Yingyi LIU  Haiwen YUAN  Qingjie ZHANG  Degui CHEN  Haibin YUAN  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1404-1410

    The dynamic characteristics are the key issues in the optimum design of a permanent magnetic actuator (PMA). A new approach to forecast the dynamic characteristics of the multilink PMA is proposed. By carrying out further developments of ADAMS and ANSOFT, a mathematic calculation model describing the coupling of mechanical movement, electric circuit and magnetic field considering eddy current effect, is constructed. With this model, the dynamic characteristics of the multilink PMA are calculated and compared with the experimental results. Factors that affect the opening time of the multilink PMA are analyzed with the model as well. The method is capable of providing a reference for the design of the PMA.

  • Tiny Feel: A New Miniature Tactile Module Using Elastic and Electromagnetic Force for Mobile Devices

    Tae-Heon YANG  Sang-Youn KIM  Wayne J. BOOK  Dong-Soo KWON  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:8
      Page(s):
    2233-2242

    For tactile feedback in mobile devices, the size and the power consumption of tactile modules are the dominant factors. Thus, vibration motors have been widely used in mobile devices to provide tactile sensation. However, the vibration motor cannot sufficiently generate a great amount of tactile sensation because the magnitude and the frequency of the vibration motor are coupled. For the generation of a wide variety of tactile sensations, this paper presents a new tactile actuator that incorporates a solenoid, a permanent magnet and an elastic spring. The feedback force in this actuator is generated by elastic and electromagnetic force. This paper also proposes a tiny tactile module with the proposed actuators. To construct a tiny tactile module, the contactor gap of the module is minimized without decreasing the contactor stroke, the output force, and the working frequency. The elastic springs of the actuators are separated into several layers to minimize the contactor gap without decreasing the performance of the tactile module. Experiments were conducted to investigate each contactor output force as well as the frequency response of the proposed tactile module. Each contactor of the tactile module can generate enough output force to stimulate human mechanoreceptors. As the contactors are actuated in a wide range of frequency, the proposed tactile module can generate various tactile sensations. Moreover, the size of the proposed tactile module is small enough to be embedded it into a mobile device, and its power consumption is low. Therefore, the proposed tactile actuator and module have good potential in many interactive mobile devices.

  • An Ultrasonic Actuating Driver for a Central Supporting Bending Mode Using a Motional Current Technique

    Fuhliang WEN  Chao-Chun WEN  Ming-Hung LAI  Ichien HSU  

     
    PAPER-Actuators & Pulse Generators

      Vol:
    E92-C No:8
      Page(s):
    1058-1065

    This paper proposes the design of a driver to deal with a thin-disc central supporting structure ultrasonic actuator based on the vibration modes and the equivalent circuit. In order to gain the electromechanical match at resonant frequency, a spectrum analyzer should measure admittance for driving piezoelectric ceramics. The virtual analyzer also investigated the characteristics of a MODEL-E equivalent circuit based upon the admittance-frequency response. The inherent capacitance from an ultrasonic actuator became the partial component in the design of a resonant circuit. IsSpice software is introduced to simulate as well as the experimental results has demonstrated a high agreement related to the conceptual design and practical implementation for the driving circuit.

  • Control of Speed and Power in a Humanoid Robot Arm Using Pneumatic Actuators for Human-Robot Coexisting Environment

    Kiyoshi HOSHINO  

     
    PAPER-Interface Design

      Vol:
    E91-D No:6
      Page(s):
    1693-1699

    A new type of humanoid robot arm which can coexist and be interactive with human beings are looked for. For the purpose of implementation of human smooth and fast movement to a pneumatic robot, the author used a humanoid robot arm with pneumatic agonist-antagonist actuators as endoskeletons which has control mechanism in the stiffness of each joint, and the controllability was experimentally discussed. Using Kitamori 's method to experimentally decide the control gains and using I-PD controller, three joints of the humanoid robot arm were experimentally controlled. The damping control algorithm was also adopted to the wrist joint, to modify the speed in accordance with the power. The results showed that the controllability to step-wise input was less than one degree in error to follow the target angles, and the time constant was less than one second. The simultaneous input of command to three joints was brought about the overshoot of about ten percent increase in error. The humanoid robot arm can generate the calligraphic motions, moving quickly at some times but slowly at other times, or particularly softly on some occasions but stiffly on other occasions at high accuracy.

  • Photonic Crystal Waveguide Switches with Movable Slabs

    Kazuhiro HANE  Ken-ichi UMEMORI  Yoshiaki KANAMORI  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    51-58

    Photonic crystal waveguide switches with movable micro-electro-mechanical actuators are proposed and fabricated by silicon micromachining. The switch structure consists of in-line input and output photonic crystal waveguide slabs, and a switching slab to bridge the gap between the waveguides. By driving the switching slab with a micro electro-mechanical actuator, the transmission between the waveguides is modulated. For driving the slabs, two kinds of actuator, i.e., vertical and parallel motion actuators are proposed for the respective switches. The switching characteristics are also investigated by calculations using the finite-difference time-domain method.

  • Mechanism of Humanoid Robot Arm with 7 DOFs Having Pneumatic Actuators

    Kiyoshi HOSHINO  Ichiro KAWABUCHI  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:11
      Page(s):
    3290-3297

    Pneumatic pressure, which is easy enough to be handled in comparison with hydraulic pressure and is endowed with high safety, is available for a power source of a robot arm to be utilized in concert with human beings to do various types of work. But pneumatic pressure is so low in comparison with hydraulic pressure that an air cylinder having a diameter long enough and stroke wide enough is required to obtain great output power. In this study, therefore, the investigation was made with layout of air cylinders and transmission mechanisms of the motion power directed toward the driving joints to be followed by development of a new humanoid robot arm with seven degrees of freedom in which air cylinders are compactly incorporated. To be concrete with this, contrivance was made with an endoskeleton structure allowing almost all of the structure materials of the individual arm joints to be shared by the air cylinder with incorporation of the air cylinder in the axes of the upper arm joint and forearm joints by paying attention to the fact that the cylinder itself has high strength. The evaluation experiments driving the robot arm referred to above were conducted by means of I-PD control. The results suggested that the mechanism of the robot with seven degrees of freedom having pneumatic actuators proposed in this study is useful as the humanoid robot arm. The quick and accurate motions were accomplished with I-PD control which is relatively easy to be dealt with but not suitable for non-linear actuator system.

  • Static and Dynamic Analysis for Contactor with a New Type of Permanent Magnet Actuator

    Mingzhe RONG  Jianyong LOU  Yiying LIU  Jian LI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E89-C No:8
      Page(s):
    1210-1216

    A new type of permanent magnet actuator driven by electromagnetic repulsive force in breaking course and electromagnetic attraction force during closing course is presented in this paper, and the static and dynamic characteristics for contactor with this new type actuator are mainly focused on by simulation and experiment simultaneously. Firstly, the static electromagnetic attraction force in closing course and electromagnetic repulsive force in breaking course are studied by FEM simulation and experiment. Secondly, by coupling of the electrical and mechanical differential equations, the dynamic electromagnetic attraction force in closing course and dynamic electromagnetic repulsive force in breaking course are obtained respectively. Thirdly, by constructing the mechanical model of contact system and permanent magnet actuator, the displacements of moving contact and moving core while both contactors' closing and breaking are obtained by simulation and experimental study. It is indicated that simulation results coincide well with that of experiment.

1-20hit(38hit)