The search functionality is under construction.

Keyword Search Result

[Keyword] application(246hit)

21-40hit(246hit)

  • A Color Restoration Method for Irreversible Thermal Paint Based on Atmospheric Scattering Model

    Zhan WANG  Ping-an DU  Jian LIU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/12/08
      Vol:
    E101-D No:3
      Page(s):
    826-829

    Irreversible thermal paints or temperature sensitive paints are a kind of special temperature sensor which can indicate the temperature grad by judging the color change and is widely used for off-line temperature measurement during aero engine test. Unfortunately, the hot gases flow within the engine during measuring always make the paint color degraded, which means a serious saturation reduction and contrast loss of the paint colors. This phenomenon makes it more difficult to interpret the thermal paint test results. Present contrast enhancement algorithms can significantly increase the image contrast but can't protect the hue feature of the paint images effectively, which always cause color shift. In this paper, we propose a color restoration method for thermal paint image. This method utilizes the atmospheric scattering model to restore the lost contrast and saturation information, so that the hue can be protected and the temperature can be precisely interpreted based on the image.

  • Shoulder-Surfing Resistant Authentication Using Pass Pattern of Pattern Lock

    So HIGASHIKAWA  Tomoaki KOSUGI  Shogo KITAJIMA  Masahiro MAMBO  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    45-52

    We study an authentication method using secret figures of Pattern Lock, called pass patterns. In recent years, it is important to prevent the leakage of personal and company information on mobile devices. Android devices adopt a login authentication called Pattern Lock, which achieves both high resistance to Brute Force Attack and usability by virtue of pass pattern. However, Pattern Lock has a problem that pass patterns directly input to the terminal can be easily remembered by shoulder-surfing attack. In this paper, we propose a shoulder-surfing resistant authentication using pass pattern of Pattern Lock, which adopts a challenge & response authentication and also uses users' short-term memory. We implement the proposed method as an Android application and measure success rate, authentication time and the resistance against shoulder surfing. We also evaluate security and usability in comparison with related work.

  • An Application Framework for Smart Education System Based on Mobile and Cloud Systems

    Toru KOBAYASHI  Kenichi ARAI  Hiroyuki SATO  Shigeaki TANIMOTO  Atsushi KANAI  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2399-2410

    Smart education environment, that is a learning environment utilizing the Information Communication Technology (ICT), has attracted a great deal of attention. In order to expand this environment, we need a system that can establish the learning environment armed cloud systems to reduce a significant strain on teaching staff. The important issue for such system is extensibility because the system should be adapted to many kinds of original digital learning material with minimum modification. Therefore, this paper proposes “An Application Framework for Smart Education System: SES Framework”. In this Smart Education System, multi-aspect information concerning to a technical term embedded in the original digital learning material can be retrieved from different social media automatically. They can be also displayed on multi-screen devices according to user's operation. It is implemented based on “Transforming Model” which enables the migration of the original digital learning material to the smart education environment. It also has an easy operation flow for trainees named “three-step selection flow”. SES Framework derived from Model-View-Controller (MVC) pattern is based on the system architecture that enables triple mashup against the original digital learning material, external social media, and screen devices in front of users. All these functionalities have been implemented on cloud systems. We show SES Framework through the implementation example. We also demonstrate the effectiveness of SES Framework by indicating the system modification case study.

  • Trustworthy DDoS Defense: Design, Proof of Concept Implementation and Testing

    Mohamad Samir A. EID  Hitoshi AIDA  

     
    PAPER-Internet Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1738-1750

    Distributed Denial of Service (DDoS) attacks based on HTTP and HTTPS (i.e., HTTP(S)-DDoS) are increasingly popular among attackers. Overlay-based mitigation solutions attract small and medium-sized enterprises mainly for their low cost and high scalability. However, conventional overlay-based solutions assume content inspection to remotely mitigate HTTP(S)-DDoS attacks, prompting trust concerns. This paper reports on a new overlay-based method which practically adds a third level of client identification (to conventional per-IP and per-connection). This enhanced identification enables remote mitigation of more complex HTTP(S)-DDoS categories without content inspection. A novel behavior-based reputation and penalty system is designed, then a simplified proof of concept prototype is implemented and deployed on DeterLab. Among several conducted experiments, two are presented in this paper representing a single-vector and a multi-vector complex HTTP(S)-DDoS attack scenarios (utilizing LOIC, Slowloris, and a custom-built attack tool for HTTPS-DDoS). Results show nearly 99.2% reduction in attack traffic and 100% chance of legitimate service. Yet, attack reduction decreases, and cost in service time (of a specified file) rises, temporarily during an approximately 2 minutes mitigation time. Collateral damage to non-attacking clients sharing an attack IP is measured in terms of a temporary extra service time. Only the added identification level was utilized for mitigation, while future work includes incorporating all three levels to mitigate switching and multi-request per connection attack categories.

  • Feature Detection Scheme Using Cyclic Prefix (CP) in OFDM; Analytical Method for Basic Performance Characteristics and Applications to Mobile Communication Systems

    Kanshiro KASHIKI  Tomoki SADA  Akira YAMAGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1064-1074

    This paper presents study results regarding the analytical method for performance characteristics and application scheme, which cover a feature detection scheme using a Cyclic Prefix (CP) that is attached to an OFDM signal. The detection scheme is especially important when used as a sensing technology in advanced systems such as Device-to-Device (D-to-D) or Internet of Things (IoT). Herein, we present several basic performance characteristics of the signal processing involved in feature detection, namely, the Output S/N (Signal-to-Noise power ratio) and probability density functions of the OFDM signal and the noise measured at the output of the feature detector. The Output S/Nis described by an analytical expression and is also examined by conducting a software simulation. An analytical approach is investigated by modeling the spectral density of the OFDM signal and input noise and by executing the mathematical operations such as convolutional integration on the combination of OFDM signal and noise. The analytical results coincide closely with the simulation results. As for the applications to mobile communication system, some methods of the feature detection schemes are addressed. These are an estimation method for the Input C/N (Carrier-to-Noise power ratio) and a system discrimination scheme, especially under the assumption that two OFDM systems using different CP lengths are simultaneously operated in the same frequency. Furthermore, under the condition that two OFDM signals are transmitted in an asynchronous manner, a scheme to estimate their timing offset and signal power ratio is also described.

  • A 8 Phases 192MHz Crystal-Less Clock Generator with PVT Calibration

    Ting-Chou LU  Ming-Dou KER  Hsiao-Wen ZAN  Jen-Chieh LIU  Yu LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:1
      Page(s):
    275-282

    A multi-phase crystal-less clock generator (MPCLCG) with a process-voltage-temperature (PVT) calibration circuit is proposed. It operates at 192 MHz with 8 phases outputs, and is implemented as a 0.18µm CMOS process for digital power management systems. A temperature calibrated circuit is proposed to align operational frequency under process and supply voltage variations. It occupies an area of 65µm × 75µm and consumes 1.1mW with the power supply of 1.8V. Temperature coefficient (TC) is 69.5ppm/°C from 0 to 100°C, and 2-point calibration is applied to calibrate PVT variation. The measured period jitter is a 4.58-ps RMS jitter and a 34.55-ps peak-to-peak jitter (P2P jitter) at 192MHz within 12.67k-hits. At 192MHz, it shows a 1-MHz-offset phase noise of -102dBc/Hz. Phase to phase errors and duty cycle errors are less than 5.5% and 4.3%, respectively.

  • Fine-Grained Data Management for DRAM/SSD Hybrid Main Memory Architecture

    Liyu WANG  Qiang WANG  Lan CHEN  Xiaoran HAO  

     
    LETTER-Computer System

      Pubricized:
    2016/08/30
      Vol:
    E99-D No:12
      Page(s):
    3172-3176

    Many data-intensive applications need large memory to boost system performance. The expansion of DRAM is restricted by its high power consumption and price per bit. Flash as an existing technology of Non-Volatile Memory (NVM) can make up for the drawbacks of DRAM. In this paper, we propose a hybrid main memory architecture named SSDRAM that expands RAM with flash-based SSD. SSDRAM implements a runtime library to provide several transparent interfaces for applications. Unlike using SSD as system swap device which manages data at a page level, SSDRAM works at an application object granularity to boost the efficiency of accessing data on SSD. It provides a flexible memory partition and multi-mapping strategy to manage the physical memory by micro-pages. Experimental results with a number of data-intensive workloads show that SSDRAM can provide up to 3.3 times performance improvement over SSD-swap.

  • Static Mapping of Multiple Parallel Applications on Non-Hierarchical Manycore Embedded Systems

    Yining XU  Yang LIU  Junya KAIDA  Ittetsu TANIGUCHI  Hiroyuki TOMIYAMA  

     
    LETTER

      Vol:
    E99-A No:7
      Page(s):
    1417-1419

    This paper proposes a static application mapping technique, based on integer linear programming, for non-hierarchical manycore embedded systems. Unlike previous work which was designed for hierarchical manycore SoCs, this work allows more flexible application mapping to achieve higher performance. The experimental results show the effectiveness of this work.

  • Free Space Optic and mmWave Communications: Technologies, Challenges and Applications Open Access

    Tawfik ISMAIL  Erich LEITGEB  Thomas PLANK  

     
    INVITED PAPER

      Vol:
    E99-B No:6
      Page(s):
    1243-1254

    Increasing demand in data-traffic has been addressed over the last few years. It is expected that the data-traffic will present the significant part of the total backbone traffic. Accordingly, much more transmission systems will be required to support this growth. A free space optic (FSO) communication is the greatest promising technology supporting high-speed and high-capacity transport networks. It can support multi Gbit/s for few kilometers transmission distance. The benefits of an FSO system are widespread, low cost, flexibility, immunity to electromagnetic field, fast deployment, security, etc. However, it suffers from some drawbacks, which limit the deployment of FSO links. The main drawback in FSO is the degradation in the signal quality because of atmospheric channel impairments. In addition, it is high sensitive for illumination noise coming from external sources such as sun and lighting systems. It is more benefit that FSO and mmWave are operating as a complementary solution that is known as hybrid FSO/mmWave links. Whereas the mmWave is susceptible to heavy rain conditions and oxygen absorption, while fog has no particular effect. This paper will help to better understand the FSO and mmWave technologies and applications operating under various atmospheric conditions. Furthermore, in order to improve the system performance and availability, several modulation schemes will be discussed. In addition to, the hybrid FSO/mmWave with different diversity combining techniques are presented.

  • Score Level Fusion for Network Traffic Application Identification

    Masatsugu ICHINO  Hiroaki MAEDA  Hiroshi YOSHIURA  

     
    PAPER-Internet

      Vol:
    E99-B No:6
      Page(s):
    1341-1352

    A method based on score level fusion using logistic regression has been developed that uses packet header information to classify Internet applications. Applications are classified not on the basis of the individual flows for each type of application but on the basis of all the flows for each type of application, i.e., the “overall traffic flow.” The overall traffic flow is divided into equal time slots, and the applications are classified using statistical information obtained for each time slot. Evaluation using overall traffic flow generated by five types of applications showed that its true and false positive rates are better than those of methods using feature level fusion.

  • Hybrid Recovery-Based Intrusion Tolerant System for Practical Cyber-Defense

    Bumsoon JANG  Seokjoo DOO  Soojin LEE  Hyunsoo YOON  

     
    PAPER

      Pubricized:
    2016/01/29
      Vol:
    E99-D No:4
      Page(s):
    1081-1091

    Due to the periodic recovery of virtual machines regardless of whether malicious intrusions exist, proactive recovery-based Intrusion Tolerant Systems (ITSs) are being considered for mission-critical applications. However, the virtual replicas can easily be exposed to attacks during their working period, and additionally, proactive recovery-based ITSs are ineffective in eliminating the vulnerability of exposure time, which is closely related to service availability. To address these problems, we propose a novel hybrid recovery-based ITS in this paper. The proposed method utilizes availability-driven recovery and dynamic cluster resizing. The availability-driven recovery method operates the recovery process by both proactive and reactive ways for the system to gain shorter exposure times and higher success rates. The dynamic cluster resizing method reduces the overhead of the system that occurs from dynamic workload fluctuations. The performance of the proposed ITS with various synthetic and real workloads using CloudSim showed that it guarantees higher availability and reliability of the system, even under malicious intrusions such as DDoS attacks.

  • Dynamic Inbound Rate Adjustment Scheme for Virtualized Cloud Data Centers

    Jaehyun HWANG  Cheol-Ho HONG  Hyo-Joong SUH  

     
    LETTER-Information Network

      Pubricized:
    2015/11/30
      Vol:
    E99-D No:3
      Page(s):
    760-762

    This paper proposes a rate adjustment scheme for inbound data traffic on a virtualized host. Most prior studies on network virtualization have only focused on outbound traffic, yet many cloud applications rely on inbound traffic performance. The proposed scheme adjusts the inbound rates of virtual network interfaces dynamically in proportion to the bandwidth demands of the virtual machines.

  • Application Authentication System with Efficiently Updatable Signature

    Kazuto OGAWA  Go OHTAKE  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    69-82

    Broadcasting and communications networks can be used together to offer hybrid broadcasting services that incorporate a variety of personalized information from communications networks in TV programs. To enable these services, many different applications have to be run on a user terminal, and it is necessary to establish an environment where any service provider can create applications and distribute them to users. The danger is that malicious service providers might distribute applications which may cause user terminals to take undesirable actions. To prevent such applications from being distributed, we propose an application authentication protocol for hybrid broadcasting and communications services. Concretely, we modify a key-insulated signature scheme and apply it to this protocol. In the protocol, a broadcaster distributes a distinct signing key to each service provider that the broadcaster trusts. As a result, users can verify that an application is reliable. If a signed application causes an undesirable action, a broadcaster can revoke the privileges and permissions of the service provider. In addition, the broadcaster can update the signing key. That is, our protocol is secure against leakage of the signing key by the broadcaster and service providers. Moreover, a user terminal uses only one verification key for verifying a signature, so the memory needed for storing the verification key in the user terminal is very small. With our protocol, users can securely receive hybrid services from broadcasting and communications networks.

  • Ontology Based Framework for Interactive Self-Assessment of e-Health Applications Open Access

    Wasin PASSORNPAKORN  Sinchai KAMOLPHIWONG  

     
    INVITED PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    2-9

    Personal e-healthcare service is growing significantly. A large number of personal e-health measuring and monitoring devices are now in the market. However, to achieve better health outcome, various devices or services need to work together. This coordination among services remains challenge, due to their variations and complexities. To address this issue, we have proposed an ontology-based framework for interactive self-assessment of RESTful e-health services. Unlike existing e-health service frameworks where they had tightly coupling between services, as well as their data schemas were difficult to change and extend in the future. In our work, the loosely coupling among services and flexibility of each service are achieved through the design and implementation based on HYDRA vocabulary and REST principles. We have implemented clinical knowledge through the combination of OWL-DL and SPARQL rules. All of these services evolve independently; their interfaces are based on REST principles, especially HATEOAS constraints. We have demonstrated how to apply our framework for interactive self-assessment in e-health applications. We have shown that it allows the medical knowledge to drive the system workflow according to the event-driven principles. New data schema can be maintained during run-time. This is the essential feature to support arriving of IoT (Internet of Things) based medical devices, which have their own data schema and evolve overtime.

  • Application Prefetcher Design Using both I/O Reordering and I/O Interleaving

    Yongsoo JOO  Sangsoo PARK  Hyokyung BAHN  

     
    LETTER-Computer System

      Pubricized:
    2015/08/20
      Vol:
    E98-D No:12
      Page(s):
    2317-2321

    Application prefetchers improve application launch performance on HDDs through either I/O reordering or I/O interleaving, but there has been no proposal to combine the two techniques. We present a new algorithm to combine both approaches, and demonstrate that it reduces cold start launch time by 50%.

  • A Flexible Direct Attached Storage for a Data Intensive Application

    Takatsugu ONO  Yotaro KONISHI  Teruo TANIMOTO  Noboru IWAMATSU  Takashi MIYOSHI  Jun TANAKA  

     
    PAPER-Storage System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2168-2177

    Big data analysis and a data storing applications require a huge volume of storage and a high I/O performance. Applications can achieve high level of performance and cost efficiency by exploiting the high I/O performance of direct attached storages (DAS) such as internal HDDs. With the size of stored data ever increasing, it will be difficult to replace servers since internal HDDs contain huge amounts of data. Generally, the data is copied via Ethernet when transferring the data from the internal HDDs to the new server. However, the amount of data will continue to rapidly increase, and thus, it will be hard to make these types of transfers through the Ethernet since it will take a long time. A storage area network such as iSCSI can be used to avoid this problem because the data can be shared with the servers. However, this decreases the level of performance and increases the costs. Improving the flexibility without incurring I/O performance degradation is required in order to improve the DAS architecture. In response to this issue, we propose FlexDAS, which improves the flexibility of direct attached storage by using a disk area network (DAN) without degradation the I/O performance. A resource manager connects or disconnects the computation nodes to the HDDs via the FlexDAS switch, which supports the SAS or SATA protocols. This function enables for the servers to be replaced in a short period of time. We developed a prototype FlexDAS switch and quantitatively evaluated the architecture. Results show that the FlexDAS switch can disconnect and connect the HDD to the server in just 1.16 seconds. We also confirmed that the FlexDAS improves the performance of the data intensive applications by up to 2.84 times compared with the iSCSI.

  • Verifying OSEK/VDX Applications: A Sequentialization-Based Model Checking Approach

    Haitao ZHANG  Toshiaki AOKI  Yuki CHIBA  

     
    PAPER-Software System

      Pubricized:
    2015/07/06
      Vol:
    E98-D No:10
      Page(s):
    1765-1776

    OSEK/VDX, a standard for an automobile OS, has been widely adopted by many manufacturers to design and develop a vehicle-mounted OS. With the increasing functionalities in vehicles, more and more complex applications are be developed based on the OSEK/VDX OS. However, how to ensure the reliability of developed applications is becoming a challenge for developers. To ensure the reliability of developed applications, model checking as an exhaustive technique can be applied to discover subtle errors in the development process. Many model checkers have been successfully applied to verify sequential software and general multi-threaded software. However, it is hard to directly use existing model checkers to precisely verify OSEK/VDX applications, since the execution characteristics of OSEK/VDX applications are different from the sequential software and general multi-threaded software. In this paper, we describe and develop an approach to translate OSEK/VDX applications into sequential programs in order to employ existing model checkers to precisely verify OSEK/VDX applications. The value of our approach is that it can be considered as a front-end translator for enabling existing model checkers to verify OSEK/VDX applications.

  • WBAN Energy Efficiency and Dependability Improvement Utilizing Wake-Up Receiver Open Access

    Juha PETÄJÄJÄRVI  Heikki KARVONEN  Konstantin MIKHAYLOV  Aarno PÄRSSINEN  Matti HÄMÄLÄINEN  Jari IINATTI  

     
    INVITED PAPER

      Vol:
    E98-B No:4
      Page(s):
    535-542

    This paper discusses the perspectives of using a wake-up receiver (WUR) in wireless body area network (WBAN) applications with event-driven data transfers. First we compare energy efficiency between the WUR-based and the duty-cycled medium access control protocol -based IEEE 802.15.6 compliant WBAN. Then, we review the architectures of state-of-the-art WURs and discuss their suitability for WBANs. The presented results clearly show that the radio frequency envelope detection based architecture features the lowest power consumption at a cost of sensitivity. The other architectures are capable of providing better sensitivity, but consume more power. Finally, we propose the design modification that enables using a WUR to receive the control commands beside the wake-up signals. The presented results reveal that use of this feature does not require complex modifications of the current architectures, but enables to improve energy efficiency and latency for small data blocks transfers.

  • Predicting Research Trends Identified by Research Histories via Breakthrough Researches

    Nagayoshi YAMASHITA  Masayuki NUMAO  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E98-D No:2
      Page(s):
    355-362

    Since it is difficult to understand or predict research trends, we proposed methodologies for understanding and predicting research trends in the sciences, focusing on the structures of grants in the Japan Society for the Promotion of Science (JSPS), a Japanese funding agency. Grant applications are suitable for predicting research trends because these are research plans for the future, different from papers, which report research outcomes in the past. We investigated research trends in science focusing on research histories identified in grant application data of JSPS. Then we proposed a model for predicting research trends, assuming that breakthrough research encourages researchers to change from their current research field to an entirely new research field. Using breakthrough research, we aim to obtain higher precision in the prediction results. In our experimental results, we found that research fields in Informatics correlate well with actual scientific research trends. We also demonstrated that our prediction models are effective in actively interacting research areas, which include Informatics and Social Sciences.

  • Distributed Synchronization for Message-Passing Based Embedded Multiprocessors

    Hao XIAO  Ning WU  Fen GE  Guanyu ZHU  Lei ZHOU  

     
    LETTER-Architecture

      Vol:
    E98-D No:2
      Page(s):
    272-275

    This paper presents a synchronization mechanism to effectively implement the lock and barrier protocols in a decentralized manner through explicit message passing. In the proposed solution, a simple and efficient synchronization control mechanism is proposed to support queued synchronization without contention. By using state-of-the-art Application-Specific Instruction-set Processor (ASIP) technology, we embed the synchronization functionality into a baseline processor, making the proposed mechanism feature ultra-low overhead. Experimental results show the proposed synchronization achieves ultra-low latency and almost ideal scalability when the number of processors increases.

21-40hit(246hit)