The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] cantilever(7hit)

1-7hit
  • Novel Multi-Objective Design Approach for Cantilever of Relay Contact Using Preference Set-Based Design Method

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Pubricized:
    2020/07/03
      Vol:
    E103-C No:12
      Page(s):
    713-717

    In the design of electrical contacts, it is required to pursue a solution which satisfies simultaneously multi-objective (electrical, mechanical, and thermal) performances including conflicting requirements. Preference Set-Based Design (PSD) has been proposed as practical procedure of the fuzzy set-based design method. This brief paper newly attempts to propose a concurrent design method by PSD to electrical contact, specifically a design of a shape of cantilever in relay contacts. In order to reduce the calculation (and/or experimental) cost, this paper newly attempt to apply Design of Experiments (DoE) for meta-modeling to PSD. The number of the calculation for the meta-modeling can be reduced to $ rac{1}{729}$ by using DoE. The design parameters (width and length) of a cantilever for drive an electrical contact, which satisfy required performance (target deflection), are obtained in ranges successfully by PSD. The validity of the design parameters is demonstrated by numerical modeling.

  • Fabrication Process of Nonarcing Power MEMS Switch

    Yu YONEZAWA  Noboru WAKATSUKI  Yoshio SATOH  Tadashi NAKATANI  Koichiro SAWA  

     
    PAPER-Relays and Switches

      Vol:
    E88-C No:8
      Page(s):
    1629-1634

    We proposed a new electric contact device that suppresses the arc phenomena. The functions of electric contacts are divided into energizing and switching for arc suppression. Switching contacts consist of multielectrodes and each electrode current is suppressed by the series resistance. For realization of multicontacting, cantilever beam array electrodes were formed on a silicon substrate using micro-electromechanical systems (MEMS) technology. The finite element method was used to optimize the structure. The fabrication process of the cantilever was examined. Au-Au contact current of 0.97 A was broken without arc ignition.

  • Fatigue Characteristics of the Si Moveable Comb Inserted into MEMS Optical Devices

    Takayuki SHIMAZU  Makoto KATAYAMA  Yoshitada ISONO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E88-C No:5
      Page(s):
    1020-1024

    This paper focuses on the fatigue characteristics of the single crystal silicon (SC-Si) cantilever in relation with the critical design of micro electro-mechanical systems (MEMS). Development of MEMS actuators for optical communication usage is carried out successfully, for example, in optical switches and variable optical attenuators (VOA). In those devices, fatigue characteristics of the MEMS structure are crucial to its practical application. However, fatigue tests using real structures have not been carried out well. In this research, the fatigue life has been inspected at the actual device, under actual usage conditions for the first time. We obtained fracture rate λ from experimental results, and the value of Failure in Time (FIT) λ was about 0.3 FIT. This result indicates that these MEMS devices having enough reliability for practical usage.

  • Investigations of Local Surface Properties by SNOM Combined with KFM Using a PZT Cantilever

    Nobuo SATOH  Shunji WATANABE  Toru FUJII  Kei KOBAYASHI  Hirofumi YAMADA  Kazumi MATSUSHIGE  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2071-2076

    Scanning near-field optical microscopy (SNOM) combined with Kelvin force microscopy (KFM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film as an integrated deflection sensor have been developed. We applied the frequency modulation (FM) detection method to this setup to increase the detection sensitivity of electrostatic forces between a probe tip and a sample. Latex particles dispersed in a polyvinylalcohol (PVA) thin film deposited onto a glass substrate were stably imaged with the SNOM while both local optical and electrical properties of a ferroelectric thin film were successfully investigated.

  • Piezoelectric Microcantilever Array for Multiprobe Scanning Force Microscopy

    Toshihiro ITOH  Ryutaro AZUMI  Tadatomo SUGA  

     
    PAPER-Sensor

      Vol:
    E80-C No:2
      Page(s):
    269-273

    We have developed and operated a newly conceived multiprobe scanning force microscope (SFM) using microfabricated piezoelectric cantilevers. An array of piezoelectric microcantilevers with a piezoelectric ZnO layer on an SiO2 film makes it possible to build a multiprobe SFM system. Multiprobe SFMs are required for the application of SFM to the probe lithography and high density data storage. Each cantilever probe of multiprobe system should have a detector for sensing of its own deflection and an actuator for positioning of its tip. The piezoelectric cantilever can detect its own vibration amplitude by measuring the piezoelectric current, and it can also drive its tip by applying a voltage to the piezoelectric layer. Therefore, the piezoelectric cantilever is suitable for each cantilever of the array in the multiprobe SFM. We have verified the applicability of the piezoelectric cantilever to each lever of the array by characterizing the sensitivities of the deflection sensing and actuation. The ZnO piezoelectric cantilever with the length of 125 µm works as the z scanner with the sensitivity of 20 nm/V. We have also fabricated an experimental piezoelectric microcantilever array with ten cantilevers. We have constructed parallel operation SFM system with two cantilevers of the fabricated array and successfully obtained parallel images of 1 µm pitch grating in constant height mode.

  • Basic Properties of Magnetostrictive Actuators Using Tb-Fe and Sm-Fe Thin Films

    Takashi HONDA  Ken Ichi ARAI  Masahiro YAMAGUCHI  

     
    PAPER-Actuator

      Vol:
    E80-C No:2
      Page(s):
    232-238

    A new magnetostrictive thin-film cantilever actuator and a new thin-film walking mechanism were developed. The actuators were made of magnetostrictive amorphous Tb-Fe and Sm-Fe thin films, deposited on the opposite sides of a polyimide film substrate. These actuators need not power supply cables because they were remotely driven by external magnetic fields. The static deflection of a 3-mm-long cantilever actuator was as large as 100 µm at 300 Oe field. Moreover the application of ac resonant frequency field of the same intensity yielded deflection of above 500 µm. The walking mechanism ran as fast as in the order of cm/s. The forward and backward running were possible depending on the frequency of applied magnetic field. Such unique characteristics suggest that magnetostrictive thin-film actuators are useful in MEMS applications.

  • Scanning Force Microscope Using Piezoelectric Excitation and Detection

    Toshihiro ITOH  Takahiro OHASHI  Tadatomo SUGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    146-151

    This paper reports on a new dynamic scanning force microscope (SFM), in which the piezoelectric microcantilever is utilized for the lever excitation and displacement sensing. Piezoelectric cantilevers can detect their deflection without external sensing elements and be vibrated with no oscillator outside. The cantilever integrated with the deflection detector and the oscillator changes the conventional construction of a dynamic SFM and expands its range of applicability. The microcantilever used consists of a ZnO layer sandwiched with Au electrodes deposited on a thin beam of thermally grown SiO2. The length, width and thickness of the lever are 125 µm, 50 µm and 3.5 µm, respectively. We have characterized this cantilever by measuring the charge spectrum and the frequency dependence of the admittance. From the charge spectrum the mechanical quality factor measured 300 in free vibration. Typical piezoelectric constant of the ZnO film was estimated approximately as 80% of single-crystal's value. The piezoelectric cantilever can be vibrated by applying the voltage with the frequency near the resonance to the piezoelectric layer. The excited amplitude per unit voltage at the resonance frequency was calculated as about 5 µm/V. The cantilever amplitude can be detected by measuring the current between electrodes, since the admittance depends on the quality factor. We have constructed a dynamic SFM without external oscillator and detector, and successfully obtained the surface images of a sol-gel derived PZT film in the cyclic contact operation mode. The longitudinal resolution of the SFM system was 0.3 nm at a 125 Hz bandwidth.