The search functionality is under construction.

Keyword Search Result

[Keyword] cellular(354hit)

201-220hit(354hit)

  • Necessary and Sufficient Conditions for One-Dimensional Discrete-Time Binary Cellular Neural Networks with Unspecified Fixed Boundaries to Be Stable

    Hidenori SATO  Tetsuo NISHI  Norikazu TAKAHASHI  

     
    PAPER

      Vol:
    E85-A No:9
      Page(s):
    2036-2043

    This paper investigates the behavior of one-dimensional discrete-time binary cellular neural networks with both the A- and B-templates and gives the necessary and sufficient conditions for the above network to be stable for unspecified fixed boundaries.

  • A Generalization of Some Complete Stability Conditions for Cellular Neural Networks with Delay

    Norikazu TAKAHASHI  Tetsuo NISHI  

     
    PAPER

      Vol:
    E85-A No:9
      Page(s):
    2044-2051

    This paper gives a new sufficient condition for cellular neural networks with delay (DCNNs) to be completely stable. The result is a generalization of two existing stability conditions for DCNNs, and also contains a complete stability condition for standard CNNs as a special case. Our new sufficient condition does not require the uniqueness of equilibrium point of DCNNs and is independent of the length of delay.

  • Analysis of Communication Traffic Characteristics of a Two-Hop Wireless Network

    Akio TANAKA  Keisuke NAKANO  Masakazu SENGOKU  Shoji SHINODA  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1436-1444

    Wireless network systems introducing both of the cellular concept and the ad-hoc concept have been proposed. Communication between two nodes in a cell is guaranteed by relaying capability of the base station in these systems. Additionally, two nodes can directly communicate with each other while they are close to each other. We call this type of network a two-hop wireless network. The teletraffic performance of this network depends on various parameters such as the size of a cell, location of nodes, the communication range of nodes, channel assignment schemes, teletraffic behavior and so on. The purpose of this paper is to theoretically analyze the teletraffic performance of the network, which has been evaluated by computer simulation, by introducing a simple model. This paper shows a technique to analyze the performance in this model. Also, this paper considers the range in which the two-hop wireless network works well for the efficient use of channels.

  • Limiting the Holding Time in Mobile Cellular Systems during Heavy Call Demand Periods in the Aftermath of Disasters

    Kazunori OKADA  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1454-1462

    Call demand suddenly and greatly increases in the aftermath of a major disaster, because people want to check on their families and friends in the stricken area. Many call attempts in mobile cellular systems are blocked due to the limited radio frequency resources. In this paper, as a solution to this problem, limiting the holding time of calls is investigated and a dynamic holding time limit (DHTL) method, which varies the holding time limit dynamically based on the number of call attempts, is proposed. The effect of limiting the holding time is investigated first using a computer simulation with a constant and heavy traffic load model. This simulation shows that the average holding time of calls is decreased as the holding time limit is reduced. But it also shows limiting the holding time decreases the number of calls blocked and forced call terminations at handover considerably. Next, a simple estimation method for the holding time limit, which reduces the blocking rate to the normal rate for increasing call demand, is described. Finally, results are given of a simulation, which show that the DHTL method keeps good performance for a sudden and great traffic load fluctuation condition.

  • Performance Evaluation of Pilot Symbol Assisted Power Control in CDMA Systems

    Moh Lim SIM  Hean Teik CHUAH  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:7
      Page(s):
    1257-1264

    Transmitter power control is an effective scheme to improve the performance of cellular DS/CDMA systems. In the reverse link, pilot symbols are used to assist the estimation of received signal power in order to improve the performance of power control. In this paper, we propose a model for the evaluation of the performance of a power-controlled reverse link CDMA system in the presence of Rayleigh flat fading. The model allows analysis of design parameters such as the number of pilot symbols, the power control updating frequency and the maximum allowable transmitted power. Analysis result shows that when transmitter power control is used, system capacity can be increased by more than 40% for typical normalised Doppler frequency in cellular communications.

  • Dynamic Mobility Management for Cellular Networks: A Delayed Renewal Process Approach

    Ramon M. RODRIGUEZ-DAGNINO  Jorge J. RUIZ-CEDILLO  Hideaki TAKAGI  

     
    PAPER-Fundamental Theories

      Vol:
    E85-B No:6
      Page(s):
    1069-1074

    Tracking mobile users in cellular wireless networks involves two basic functions: location update and paging. Location update refers to the process of tracking the location of mobile users that are not in conversation. Three basic algorithms have been proposed in the literature, namely the distance-based, time-based, and movement-based algorithms. The problem of minimizing the location update and paging costs has been solved in the literature by considering exponentially distributed Cell Residence Times (CRT) and Inter-Call Time (ICT), which is the time interval between two consecutive phone calls. In this paper we select the movement-based scheme since it is effective and easy to implement. Applying the theory of the delayed renewal process, we find the distribution of the number of cell crossings when the ICT is a mixture of exponentially distributed random variables and the CRT comes from any distribution with Laplace transform. In particular, we consider the case in which the first CRT may have a different distribution from the remaining CRT's, which includes the case of circular cells. We aim at the total cost minimization in this case.

  • Forward Link Erlang Capacity of the IMT-2000 Hierarchical Cellular System with Mixed Traffic Rates

    Young-Yong LEE  Sang-Mun LEE  Hyung-Jin CHOI  

     
    PAPER

      Vol:
    E85-A No:6
      Page(s):
    1289-1298

    In this paper, the forward link erlang capacity and outage probability for hierarchical cellular system based on 2 layer macrocell/microcell are derived analytically by considering the impact of imperfect power control and soft hand-off. The analysis on the outage probability is carried out using two methods: lognormal approximation and Chernoff upper bound. We assume that voice and multi-rate data service users are distributed uniformly in each cell and the same spectrum is applied in both layers. In addition, we take into account the base station transmission power ratio between tiers and the relative position of microcell having island distribution in macrocell. The forward link interference is evaluated by using Monte-Carlo simulation introduced in [2]. In this paper, we compare the forward link erlang capacity of 1x system to 3x system and show that 3x system can increase the user capacity by 3.4 times in case of macrocell and microcell, respectively, compared to 1x system.

  • Modeling and Performance Analysis of Cellular Networks with Channel Borrowing

    Sachiko YAMANAKA  Hiroyuki KAWANO  Yutaka TAKAHASHI  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    929-937

    This paper presents the analysis of integrated voice and data cellular networks with channel borrowing. Our considered system gives higher priority to handoff calls over new calls from users' point of view and reflects each characteristics of voice and data traffic types. Data handoff calls can wait in a queue while they are in handoff areas if there are no channels available. Voice handoff calls can borrow at most l channels from data calls if there are no idle channels upon their arrivals. We mathematically model this system by applying queueing theory. Then, we analyze its performance to derive the forced termination probability of data handoff calls, the blocking probabilities of the new and handoff calls of voice and data, and the Laplace Stieltjes transform for the distribution of waiting time in a queue. In numerical results, the analytical results for the mean waiting time of data handoff calls are compared with the simulation results to validate our analytical approach. Our system is also compared with the system where channel borrowing cannot be allowed (nonborrowing system) with respect to the blocking probabilities of the new and handoff calls of voice and data, the forced termination probability of data handoff calls, the mean and the coefficient of variation of the waiting time of data handoff calls.

  • Joint Effect of Transmit Power Control and Antenna Diversity on Spectrum Efficiency of a Cellular System

    Fumiyuki ADACHI  Akihito KATOH  Deepshikha GARG  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    919-928

    This paper addresses a classic question about whether transmit power control (TPC) can increase the spectrum efficiency of a TDMA system and an FDMA cellular system as in the case of a DS-CDMA cellular system. Two types of TPC schemes are considered; one is slow TPC that regulates the distance dependent path loss and shadowing loss, while the other is fast TPC that regulates multipath fading as well as path loss and shadowing loss. In addition to TPC, antenna diversity reception is considered. The allowable interference rise factor χ, which is defined as the interference plus background noise-to-background noise power ratio, is introduced. The simple expressions for the signal-to-interference plus background noise power ratio (SINR) at the diversity combiner output using maximal-ratio combining (MRC) are derived to obtain the reuse distance by computer simulations. The impact of joint use of TPC and antenna diversity reception on the spectrum efficiency is discussed. It is found that the joint use of fast TPC and antenna diversity is advantageous and larger spectrum efficiency can be achieved than with no TPC. On the other hand, the use of slow TPC is found advantageous only for small values of standard deviation of shadowing loss; however, the improvement in the spectrum efficiency is quite small.

  • A Quasi-Solution State Evolution Algorithm for Channel Assignment Problems in Cellular Networks

    Nobuo FUNABIKI  Toru NAKANISHI  Tokumi YOKOHIRA  Shigeto TAJIMA  Teruo HIGASHINO  

     
    PAPER

      Vol:
    E85-A No:5
      Page(s):
    977-987

    For efficient use of limited electromagnetic wave resource, the assignment of communication channels to call requests is very important in a cellular network. This task has been formulated as an NP-hard combinatorial optimization problem named the channel assignment problem (CAP). Given a cellular network and a set of call requests, CAP requires to find a channel assignment to the call requests such that three types of interference constraints between channels are not only satisfied, but also the number of channels (channel span) is minimized. This paper presents an iterative search approximation algorithm for CAP, called the Quasi-solution state evolution algorithm for CAP (QCAP). To solve hard CAP instances in reasonable time, QCAP evolutes quasi-solution states where a subset of call requests are assigned channels and no more request can be satisfied without violating the constraint. QCAP is composed of three stages. The first stage computes the lower bound on the channel span for a given instance. After the second stage greedily generates an initial quasi-solution state, the third stage evolutes them for a feasible channel assignment by iteratively generating best neighborhoods, with help of the dynamic state jump and the gradual span expansion for global convergence. The performance of QCAP is evaluated through solving benchmark instances in literature, where QCAP always finds the optimum or near-optimum solution in very short time. Our simulation results confirm the extensive search capability and the efficiency of QCAP.

  • SS-CDMA Flexible Wireless Network: Implementation of Approximately Synchronized CDMA Modem for Uplink

    Suguru KAMEDA  Kouichi TAKAHASHI  Hiroyuki NAKASE  Kazuo TSUBOUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:3
      Page(s):
    694-702

    We have proposed an intracell uplink of a spread-spectrum code-division multiple-access (SS-CDMA) flexible wireless network based on approximately synchronized (AS) CDMA. Since the AS-CDMA has no co-channel interference, complicated transmission power control (TPC) is not required. A modem of the AS-CDMA has been designed and implemented for the Japanese 2.4 GHz industrial, scientific and medical (ISM) band. Using the implemented modem, the degradation of Eb/N0 from the theoretical limit is 1.0 dB at a bit error rate (BER) of 10-3. Under 2-user environment, the degradation of carrier-to-noise ratio (CNR) is 0.5 dB at a BER of 10-3 when the desired-to-undesired signal ratio (DUR) is -20.3 dB. We have evaluated BER performances in cases of varying carrier frequency offset and median DUR with computer simulation. Under 8-user environment, at the carrier frequency offset of 0.3 ppm, the BER with the DUR of -16 dB is found to be 10-3. Using the AS-CDMA with a 4-step open-loop TPC technique, the design of intracell uplink is available.

  • Theoretical Derivation Method of Bit Error Rate in TDMA/TDD Transmitter Diversity under Cochannel Interference

    Fumiaki MAEHARA  Fumihito SASAMORI  Fumio TAKAHATA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:3
      Page(s):
    663-666

    Transmitter diversity is a powerful technique to improve the transmission quality of downlink in microcellular mobile communications systems. Under cochannel interference (CCI) at the base station (BS), the transmitter diversity is not necessarily effective, because the desired-plus-interference signal power used as a criterion of downlink branch selection is not always relative to the downlink propagation condition. This paper proposes the theoretical derivation of bit error rate (BER) performance in the transmitter diversity under CCI occurring at BS, as parameters of average SIR at BS, normalized Doppler frequency, and so on. It is confirmed from the correspondence of theoretical results with simulation results that the proposed theoretical approach is applicable to the CCI environments at BS.

  • On Cellular Arrays and Other Topics in Parallel Computing

    Oscar H. IBARRA  

     
    INVITED SURVEY PAPER

      Vol:
    E85-D No:2
      Page(s):
    312-321

    We give an overview of the computational complexity of linear and mesh-connected cellular and iterative arrays with respect to well known models of sequential and parallel computation. We discuss one-way communication versus two-way communication, serial input versus parallel input, and space-efficient simulations. In particular, we look at the parallel complexity of cellular arrays in terms of the PRAM theory and its implications, e.g., to the parallel complexity of recurrence equations and loops. We also point out some important and fundamental open problems that remain unresolved. Next, we investigate the solvability of some reachability and safety problems concerning machines operating in parallel and cite some possible applications. Finally, we briefly discuss the complexity of the "commutativity analysis" technique that is used in the areas of parallel computing and parallelizing compilers.

  • The Dawn of 3D Packaging as System-in-Package (SIP)

    Morihiro KADA  

     
    INVITED PAPER

      Vol:
    E84-C No:12
      Page(s):
    1763-1770

    The three-dimensional chip-stacked CSP, which started with a flash/SRAM combination memory for cellular phones, was the forerunner from which 3D system packages realize full-scale capability. In the future, 3D package technology will act as a savior in achieving greater shrink of silicon processes--whose limits have come into sight. As SIP, it will surpass SOC, and, as the core technology of electronic equipment for our high-speed digital network society, it is expected to lead the way into the first period of the 21st century. Today, we are seeing the signs of this transition.

  • A Novel Setup for Small Animal Exposure to Near Fields to Test Biological Effects of Cellular Telephones

    Jianqing WANG  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E84-B No:11
      Page(s):
    3050-3059

    A novel in vivo exposure setup has been developed for testing the possible promoting effects of 1.5 GHz digital cellular phones on mouse skin carcinogenesis. The exposure setup has two main features: one is the employment of an electrically short monopole antenna with capacitive-loading, which supplies the ability to realize a highly localized peak SAR above 2 W/kg without any thermal stress for a mouse; the other is the use of a transparent absorber to allow real-time observation of both the exposure process as well as mouse activities during the exposure. Dosimetric analyses for the exposure setup have been carried out both numerically and experimentally. Good agreement was confirmed between the numerical and experimental results, thereby demonstrating the validity of the novel exposure setup.

  • Optimization of Dynamic Allocation of Transmitter Power in a DS-CDMA Cellular System Using Genetic Algorithms

    Jie ZHOU  Yoichi SHIRAISHI  Ushio YAMAMOTO  Yoshikuni ONOZATO  Hisakazu KIKUCHI  

     
    PAPER-Communication Systems

      Vol:
    E84-A No:10
      Page(s):
    2436-2446

    In this paper, we propose an approach to solve the power control issue in a DS-CDMA cellular system using genetic algorithms (GAs). The transmitter power control developed in this paper has been proven to be efficient to control co-channel interference, to increase bandwidth utilization and to balance the comprehensive services that are sharing among all the mobiles with attaining a common signal-to-interference ratio(SIR). Most of the previous studies have assumed that the transmitter power level is controlled in a constant domain under the assumption of uniform distribution of users in the coverage area or in a continuous domain. In this paper, the optimal centralized power control (CPC) vector is characterized and its optimal solution for CPC is presented using GAs in a large-scale DS-CDMA cellular system under the realistic context that means random allocation of active users in the entire coverage area. Emphasis is put on the balance of services and convergence rate by using GAs.

  • Estimation of Current Distribution on Cellular Telephone Antennas Affected by Human Body Interaction

    Eiji HANKUI  Takashi HARADA  Toshihide KURIYAMA  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:9
      Page(s):
    1260-1263

    This paper describes an estimation method for an antenna current distribution including the interaction between a cellular telephone antenna and a human body. In our experiments, current distributions on a half wavelength dipole antenna at 900 MHz are evaluated by measuring the magnetic field near the antenna, when a human head-sized phantom model is located near the dipole antenna. From the experiments, the antenna current around a feed point is confirmed to increase by 30% due to the interaction effect. This result shows that antennas of portable phones should be designed by considering the effect of a human presence for the development of the higher performance antenna, and our estimation method will contribute to optimizing the design of such antennas.

  • A Filter of Concentric Shapes for Image Recognition and Its Implementation in a Modified DT-CNN

    Hector SANDOVAL  Taizoh HATTORI  Sachiko KITAGAWA  Yasutami CHIGUSA  

     
    PAPER-Image & Signal Processing

      Vol:
    E84-A No:9
      Page(s):
    2189-2197

    This paper describes the implementation of a proposed image filter into a Discrete-Time Cellular Neural Network (DT-CNN). The three stages that compose the filter are described, showing that the resultant filter is capable of (1) erasing or detecting several concentric shapes simultaneously, (2) thresholding and (3) thinning of gray-scale images. Because the DT-CNN has to fill certain conditions for this filter to be implemented, it becomes a modified version of a DT-CNN. Those conditions are described and also experimental results are clearly shown.

  • IMT-2000 and Beyond IMT--Radio Technologies toward Future Mobile Communications--

    Fumio WATANABE  

     
    INVITED PAPER

      Vol:
    E84-B No:9
      Page(s):
    2341-2347

    The field of mobile communications has continued to spread with astonishing speed in recent years. The expansion of mobile communications and the Internet has not only brought changes to communications services but also exerted huge effects on the economy and daily life. IMT-2000, International Mobile Telecommunications, is the next generation system for mobile communications systems currently being implemented. Standardization and development of IMT-2000 are in much progress under international frameworks to start commercial service by around the year 2001. This paper focuses in particular on radio transmission technology, giving an overall view of IMT-2000 standardization and technological status, as well as future technical directions extending beyond IMT-2000.

  • Clique Packing Approximation for Analysis of Teletraffic Characteristics of Dynamic Channel Assignment Considering Mobility

    Heun-Soo LEE  Naoyuki KARASAWA  Keisuke NAKANO  Masakazu SENGOKU  

     
    PAPER

      Vol:
    E84-A No:7
      Page(s):
    1651-1659

    This paper discusses the teletraffic characteristics of cellular systems using Dynamic Channel Assignment. In general, it is difficult to exactly and theoretically analyze the teletraffic characteristics of Dynamic Channel Assignment. Also, it is not easy to theoretically evaluate influence of mobility on the traffic characteristics. This paper proposes approximate techniques to analyze teletraffic characteristics of Dynamic Channel Assignment considering mobility. The proposed techniques are based on Clique Packing approximation.

201-220hit(354hit)