The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] cognitive(302hit)

101-120hit(302hit)

  • Joint Power and Rate Allocation in Cognitive Radio Multicast Networks for Outage Probability Minimization

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:3
      Page(s):
    904-906

    The problem of resource allocation to minimize the outage probability for the secondary user (SU) groups in a cognitive radio (CR) multicast network is investigated. We propose a joint power and rate allocation scheme that provides significant improvement over the conventional scheme in terms of outage probability.

  • The Impact of Opportunistic User Scheduling on Outage Probability of CR-MIMO Systems

    Donghun LEE  Byung Jang JEONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    686-690

    In this paper, we study the impact of opportunistic user scheduling on the outage probability of cognitive radio (CR) multiple-input multiple-output (MIMO) systems in the high power region where the peak transmit power constraint is higher than the peak interference constraint. The primary contributions of this paper are the derivation of exact closed-form expressions of the proposed scheduled CR-MIMO systems for outage probability and asymptotic analysis to quantify the diversity order and signal to noise ratio (SNR) gain. Through exact analytical results, we provide the achievable outage probability of the proposed scheduled systems as a function of SNR. Also, through asymptotic analysis, we show that the scheduled CR-MIMO systems provide some diversity order gain over the non-scheduled CR-MIMO systems which comes from multi-user diversity (MUD). Also, the SNR gain of the proposed scheduled systems is identical to that of the non-scheduled CR-MIMO systems.

  • Medium Access Control Design for Cognitive Radio Networks: A Survey

    Nhan NGUYEN-THANH  Anh T. PHAM  Van-Tam NGUYEN  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    359-374

    Designing a medium access control (MAC) protocol is a key for implementing any practical wireless network. In general, a MAC protocol is responsible for coordinating users in accessing spectrum resources. Given that a user in cognitive radio(CR) networks do not have priority in accessing spectrum resources, MAC protocols have to perform dynamic spectrum access (DSA) functions, including spectrum sensing, spectrum access, spectrum allocation, spectrum sharing and spectrum mobility, beside conventional control procedure. As a result, designing MAC protocols for CR networks requires more complicated consideration than that needed for conventional/primary wireless network. In this paper, we focus on two major perspectives related to the design of a CR-MAC protocol: dynamic spectrum access functions and network infrastructure. Five DSA functions are reviewed from the point of view of MAC protocol design. In addition, some important factors related to the infrastructure of a CR network including network architecture, control channel management, the number of radios in the CR device and the number of transmission data channels are also discussed. The remaining challenges and open research issues are addressed for future research to aim at obtaining practical CR-MAC protocols.

  • Parallel Cyclostationarity-Exploiting Algorithm for Energy-Efficient Spectrum Sensing

    Arthur D.D. LIMA  Carlos A. BARROS  Luiz Felipe Q. SILVEIRA  Samuel XAVIER-DE-SOUZA  Carlos A. VALDERRAMA  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    326-333

    The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.

  • White Space Communication Systems: An Overview of Regulation, Standardization and Trial Open Access

    Hiroshi HARADA  

     
    INVITED PAPER

      Vol:
    E97-B No:2
      Page(s):
    261-274

    This paper summarizes the current status of regulations, standardization efforts and trials around the world regarding white space (WS) communications, especially television band WS (TVWS). After defining WS communication systems configurations and function and the categories of white space database, the TVWS regulations in United States, United Kingdom, and Japan are summarized. Then regarding status of standardization for TVWS devices, IEEE 802 and IEEE 1900 standards are summarized. Finally ongoing pilot projects and trials of WS communications in the world are summarized, and trends and future direction of research on WS communication systems are summarized.

  • Optimal Channel-Sensing Scheme for Cognitive Radio Systems Based on Fuzzy Q-Learning

    Fereidoun H. PANAHI  Tomoaki OHTSUKI  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    283-294

    In a cognitive radio (CR) network, the channel sensing scheme used to detect the existence of a primary user (PU) directly affects the performances of both CR and PU. However, in practical systems, the CR is prone to sensing errors due to the inefficiency of the sensing scheme. This may yield primary user interference and low system performance. In this paper, we present a learning-based scheme for channel sensing in CR networks. Specifically, we formulate the channel sensing problem as a partially observable Markov decision process (POMDP), where the most likely channel state is derived by a learning process called Fuzzy Q-Learning (FQL). The optimal policy is derived by solving the problem. Simulation results show the effectiveness and efficiency of our proposed scheme.

  • Performance Evaluation of the Centralized Spectrum Access Strategy with Multiple Input Streams in Cognitive Radio Networks

    Yuan ZHAO  Shunfu JIN  Wuyi YUE  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    334-342

    In this paper, we focus on a centralized spectrum access strategy in a cognitive radio network, in which a single licensed spectrum with one primary user (PU) and several secondary users (SUs) (multiple input streams) are considered. We assume the spectrum can be divided into multiple channels and the packets from variable SUs can arrive at the system simultaneously. Taking into account the priority of the PU, we suppose that one PU packet can occupy the whole licensed spectrum, while one SU packet will occupy only one of the channels split from the licensed spectrum when that channel is not used. Moreover, in order to reduce the blocking ratio of the SUs, a buffer with finite capacity for the SUs is set. Regarding the packet arrivals from different SUs as multiple input streams, we build a two-dimensional Markov chain model based on the phase of the licensed spectrum and the number of SU packets in the buffer. Then we give the transition probability matrix for the Markov chain. Additionally, we analyze the system model in steady state and derive some important performance measures for the SUs, such as the average queue length in the buffer, the throughput and the blocking ratio. With the trade-off between different performance measures, we construct a net benefit function. At last, we provide numerical results to show the change trends of the performance measures with respect to the capacity of the SU buffer under different network conditions, and optimize the capacity of the SU buffer accordingly.

  • Spectrum Usage in Cognitive Radio Networks: From Field Measurements to Empirical Models Open Access

    Miguel LÓPEZ-BENÍTEZ  Fernando CASADEVALL  

     
    INVITED PAPER

      Vol:
    E97-B No:2
      Page(s):
    242-250

    Cognitive Radio (CR) is aimed at increasing the efficiency of spectrum utilization by allowing unlicensed users to access, in an opportunistic and non-interfering manner, some licensed bands temporarily and/or spatially unoccupied by the licensed users. The analysis of CR systems usually requires the spectral activity of the licensed system to be represented and characterized in a simple and tractable, yet accurate manner, which is accomplished by means of spectrum models. In order to guarantee the realism and accuracy of such models, the use of empirical spectrum occupancy data is essential. In this context, this paper explains the complete process of spectrum modeling, from the realization of field measurements to the obtainment of the final validated model, and highlights the main relevant aspects to be taken into account when developing spectrum usage models for their application in the context of the CR technology.

  • Feasibility of Guard Band Utilization for Cognitive Radio Using TV White Space

    Noriyuki YAGINUMA  Masahiro UMEHIRA  Hiroshi HARADA  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    343-349

    In cognitive radio systems using TV white space, it is desirable to secure a control channel to exchange the wireless network control information and to secure minimum frequency resource for secondary user communications if TV white space is unavailable. In order to satisfy these requirements, this paper proposes guard band utilization, which aggregates the multiple guard bands between digital TV signals and uses them for a control channel and/or a communication channel. To investigate the feasibility of the proposed scheme, this paper evaluates the performance degradation of the digital TV signals when the guard band is used. Furthermore, it discusses the permissible transmitting power and occupied bandwidth of the guard band signals to avoid the harmful interference to the digital TV signals.

  • Optimal Sensing Time and Power Allocation in Dynamic Primary-User Traffic Model Based Cognitive Radio Networks

    Errong PEI  Bin SHEN  Fang CHENG  Xiaorong JING  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:1
      Page(s):
    196-203

    In cognitive radio networks, the dynamic traffic of the primary user can lead to not only the spectrum sensing performance degradation, but also co-channel interference between primary user and secondary user, and, furthermore, the secondary system throughput can be decreased. Taking into account the impact of the dynamic primary-user traffic on spectrum sensing performance and the secondary throughput, we study the optimization problem of maximizing the secondary throughput under the constraints of probability of detection, average interference and transmit power budget, and derive its optimal solution. The optimal power allocation scheme and the algorithm that can find the optimal sensing time are also proposed. The proposed algorithm is of great practical significance in the scenario where primary-user traffic varies very quickly, for example, in public safety spectrum band.

  • Handoff Delay-Based Call Admission Control in Cognitive Radio Networks

    Ling WANG  Qicong PENG  Qihang PENG  

     
    PAPER-Network

      Vol:
    E97-B No:1
      Page(s):
    49-55

    In this paper, we investigate how to achieve call admission control (CAC) for guaranteeing call dropping probability QoS which is caused by handoff timeout in cognitive radio (CR) networks. When primary user (PU) appears, spectrum handoff should be initiated to maintain secondary user (SU)'s link. We propose a novel virtual queuing (VQ) scheme to schedule spectrum handoff requests sent by multiple SUs. Unlike the conventional first-come-first-served (FCFS) scheduling, resuming transmission in the original channel has higher priority than switching to another channel. It costs less because it avoids the cost of signaling frequent spectrum switches. We characterize the handoff delay on the effect of PU's behavior and the number of SUs in CR networks. And user capacity under certain QoS requirement is derived as a guideline for CAC. The analytical results show that call dropping performance can be greatly improved by CAC when a large amount of SUs arrives fast as well as the VQ scheme is verified to reduce handoff cost compared to existing methods.

  • A Low Complexity Heterodyne Multiband MIMO Receiver with Baseband Automatic Gain Control

    Tomoya OHTA  Satoshi DENNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3124-3134

    This paper proposes a novel heterodyne multiband multiple-input multiple-output (MIMO) receiver with baseband automatic gain control (AGC) for cognitive radios. The proposed receiver uses heterodyne reception implemented with a wide-passband band-pass filter in the radio frequency (RF) stage to be able to receive signals in arbitrary frequency bands. Even when an RF Hilbert transformer is utilized in the receiver, image-band interference occurs due to the imperfection of the Hilbert transformer. In the receiver, analog baseband AGC is introduced to prevent the baseband signals exceeding the voltage reference of analog-to-digital converters (ADCs). This paper proposes a novel technique to estimate the imperfection of the Hilbert transformer in the heterodyne multiband MIMO receiver with baseband AGC. The proposed technique estimates not only the imperfection of the Hilbert transformer but also the AGC gain ratio, and analog devices imperfection in the feedback loop, which enables to offset the imperfection of the Hilbert transformer. The performance of the proposed receiver is verified by using computer simulations. As a result, the required resolution of the ADC is 9 bits in the proposed receiver. Moreover, the proposed receiver has less computational complexity than that with the baseband interference cancellation unless a frequency band is changed every 9 packets or less.

  • Cooperative Message Broadcasting in Multichannel Cognitive Radio Ad Hoc Networks

    Zaw HTIKE  Choong Seon HONG  Sungwon LEE  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:11
      Page(s):
    2099-2105

    Broadcasting is an essential function in almost all wireless networks. Because of the dynamic nature of environment, broadcasting in cognitive radio ad hoc networks is a great challenge. Cognitive radio network technology has been well studied for more than a decade as a new way to improve the spectral efficiency of wireless networks and numerous precious works have been proposed. However, very few existing works consider how to broadcast messages in cognitive radio networks that operate in multichannel environments and none of these provides a full broadcast mechanism. Therefore, in this paper, we propose a broadcasting mechanism for multichannel cognitive radio ad hoc networks. Then, we analyze the mechanism regarding the speed of message dissemination, number of transmissions, fraction of the users that receive the broadcast message and so forth.

  • A Cooperative Spectrum Sensing Scheme Based on Consensus in Cognitive Radio Systems

    Mihwa SONG  Sekchin CHANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E96-A No:11
      Page(s):
    2179-2181

    In this letter, we present a novel cooperative spectrum sensing scheme for cognitive radio systems. The proposed approach is based on a consensus algorithm. Using the received signals, we set up a formula for the consensus algorithm, which guarantees a convergence to an agreement value. The simulation results exhibit that the performance of the consensus-based cooperative scheme is much better than that of the conventional cooperative technique in the case that the cooperative nodes for spectrum sensing are sparsely distributed in cognitive radio systems.

  • Realization of Secure Ambient Wireless Network System Based on Spatially Distributed Ciphering Function

    Masashi OKADA  Masahide HATANAKA  Keiichiro KAGAWA  Shinichi MIYAMOTO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E96-A No:11
      Page(s):
    2182-2184

    This paper proposes a secure wireless network system required for an ambient information society; it forms a privacy zone wherein terminals can securely communicate secret information using an arbitrary general radio channel. For this system, we introduce a scheme using a side-information from a special node. The information is used as an encryption key so that the detectable region of the key defines a privacy zone. We implement the scheme on the basis of IEEE 802.15.4 and realize the world's first ambient network platform with the above functionality. An experiment and demonstration show the effectiveness of the proposed system.

  • Multi-Channel Cooperative Spectrum Sensing in Cognitive Radio Networks

    Ji-Hoon LEE  Woo-Jin SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:9
      Page(s):
    1909-1913

    Spectrum sensing is one of the main functions in cognitive radio networks. To improve the sensing performance and increase spectrum efficiency, a number of cooperative spectrum sensing methods have been proposed. However, most of these methods focused on a single-channel environment. In this letter, we present a novel cooperative spectrum sensing method based on cooperator selection in a multi-channel cognitive radio network. Using reinforcement learning, a cognitive radio user can select reliable and robust cooperators, without any a priori knowledge. Using the proposed method, a cognitive radio user can achieve better sensing capability and overcome performance degradation problems due to malicious users or erratic user behavior. Numerical results show that the proposed method can achieve excellent performance.

  • Cooperative Multichannel MAC Protocol Using Discontiguous-OFDM in Cognitive Radio Ad Hoc Networks

    Mingyu LEE  Tae-Kyeong CHO  Tae-Jin LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:8
      Page(s):
    2139-2149

    Multichannel MAC protocols with a single control channel in a cognitive radio ad hoc network (CRAN) suffer from the bottleneck problem. So a multichannel MAC protocol that can realize a virtual control channel on all available channels is preferred. Discontiguous-Orthogonal Frequency Division Multiplexing (D-OFDM) enables multiple data to be sent and received on discontiguous multiple channels. In this paper, we propose a new cooperative multichannel MAC (CM-MAC) protocol using D-OFDM in a CRAN. In the proposed CM-MAC protocol, a new approach utilizing multiple discontiguous control channels is presented and a remedy to tackle new collision types by the approach using D-OFDM is provided. The proposed mechanism mitigates the bottleneck problem of the protocol using single control channel, but does not need to share hopping patterns between a sender and a receiver. In addition, cooperative communications with relays reduce the time required to send the data of low-rate secondary users (SUs) by enabling relay SUs to relay the data of source SUs. The proposed CM-MAC protocol is shown to enhance throughput. Analysis and simulations indicate that throughput performance improves compared to the MAC protocol using the split phase control channel (SPCC) approach.

  • Two-Level Bargaining Game Modeling for Cooperation Stimulation in Spectrum Leasing

    Biling ZHANG  Kai CHEN  Jung-lang YU  Shiduan CHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:7
      Page(s):
    1953-1961

    In cognitive radio networks, the primary user (PU) can lease a fraction of its licensed spectrum to the secondary users (SUs) in exchange for their cooperative transmission if it has a minimum transmission rate requirement and is experiencing a bad channel condition. However, due to the selfish nature of the SUs, they may not cooperate to meet the PU's Quality of Service (QoS) requirement. On the other hand, the SUs may not exploit efficiently the benefit from cooperation if they compete with each other and collaborate with the PU independently. Therefore, when SUs belong to the same organization and can work as a group, how to stimulate them to cooperate with the PU and thus guarantee the PU's QoS requirement, and how to coordinate the usage of rewarded spectrum among these SUs after cooperation are critical challenges. In this paper, we propose a two-level bargaining framework to address the aforementioned problems. In the proposed framework, the interactions between the PU and the SUs are modeled as the upper level bargaining game while the lower level bargaining game is used to formulate the SUs' decision making process on spectrum sharing. We analyze the optimal actions of the users and derive the theoretic results for the one-PU one-SU scenario. To find the solutions for the one-PU multi-SU scenario, we put forward a revised numerical searching algorithm and prove its convergence. Finally, we demonstrate the effectiveness and efficiency of the proposed scheme through simulations.

  • Multi-Antenna Spatial Multiplexing in Overlaid Wireless Networks: Transmission Capacity Analysis

    Xianling WANG  Xin ZHANG  Hongwen YANG  Dacheng YANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:7
      Page(s):
    1997-2004

    This paper investigates the transmission capacity of open-loop spatial multiplexing with zero-forcing receivers in overlaid ad hoc networks. We first derive asymptotic closed-form expressions for the transmission capacity of two coexisting networks (a primary network vs. a secondary network). We then address a special case with equal numbers of transmit and receive antennas through exact analysis. Numerical results validate the accuracy of our expressions. Our findings show that the overall transmission capacity of coexisting networks will improve significantly over that of a single network if the primary network can tolerate a slight outage probability increase. This improvement can be further boosted if more streams are configured in the spatial multiplexing scheme; less improvement is achieved by placing more antennas at the receive side than the transmit side. However, when the stream number exceeds a certain limit, spatial multiplexing will produce negative effect for the overlaid network.

  • Pricing in Cognitive Radio Networks with Interference Cancellation

    Zheng-qiang WANG  Ling-ge JIANG  Chen HE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:7
      Page(s):
    1671-1674

    This letter investigates price-based power control for cognitive radio networks (CRNs) with interference cancellation. The base station (BS) of the primary users (PUs) will admit secondary users (SUs) to access by pricing their interference power under the interference power constraint (IPC). We give the optimal price for BS to maximize its revenue and the optimal interference cancellation order to minimize the total transmit power of SUs. Simulation results show the effectiveness of the proposed pricing scheme.

101-120hit(302hit)