The search functionality is under construction.

Keyword Search Result

[Keyword] current-steering(3hit)

1-3hit
  • Novel DEM Technique for Current-Steering DAC in 65-nm CMOS Technology

    Yuan WANG  Wei SU  Guangliang GUO  Xing ZHANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E98-C No:12
      Page(s):
    1193-1195

    A novel dynamic element matching (DEM) method, called binary-tree random DEM (BTR-DEM), is presented for a Nyquist-rate current-steering digital-to-analog converter (DAC). By increasing or decreasing the number of unit current sources randomly at the same time, the BTR-DEM encoding reduces switch transition glitches. A 5-bit current-steering DAC with the BTR-DEM technique is implemented in a 65-nm CMOS technology. The measured spurious free dynamic range (SFDR) attains 42 dB for a sample rate of 100 MHz and shows little dependence on signal frequency.

  • A Multiple-Valued Reconfigurable VLSI Architecture Using Binary-Controlled Differential-Pair Circuits

    Xu BAI  Michitaka KAMEYAMA  

     
    PAPER-Integrated Electronics

      Vol:
    E96-C No:8
      Page(s):
    1083-1093

    This paper presents a fine-grain bit-serial reconfigurable VLSI architecture using multiple-valued switch blocks and binary logic modules. Multiple-valued signaling is utilized to implement a compact switch block. A binary-controlled current-steering technique is introduced, utilizing a programmable three-level differential-pair circuit to implement a high-performance low-power arbitrary two-variable binary function, and increase the noise margins in comparison with the quaternary-controlled differential-pair circuit. A current-source sharing technique between a series-gating differential-pair circuit and a current-mode D-latch is proposed to reduce the current source count and improve the speed. It is demonstrated that the power consumption and the delay of the proposed multiple-valued cell based on the binary-controlled current-steering technique and the current-source-sharing technique are reduced to 63% and 72%, respectively, in comparison with those of a previous multiple-valued cell.

  • A 24-GS/s 6-bit R-2R Current-Steering DAC in InP HBT Technology

    Munehiko NAGATANI  Hideyuki NOSAKA  Shogo YAMANAKA  Kimikazu SANO  Koichi MURATA  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E93-C No:8
      Page(s):
    1279-1285

    This paper describes the circuit design and measured performance of a high-speed digital-to-analog converter (DAC) for the next generation of coherent optical communications systems. To achieve high-speed and low-power operation, we used an R-2R current-steering architecture and devised timing alignment and waveform improvement techniques. A 6-bit DAC test chip was fabricated with InP HBT technology, which yields a peak ft of 175 GHz and a peak fmax of 260 GHz. The measured differential and integral non-linearity (DNL and INL) are within +0.61/-0.07 LSB and +0.27/-0.52 LSB, respectively. The measured spurious-free dynamic range (SFDR) is 44.7 dB for a sinusoidal output of 72.5 MHz at a sampling rate of 13.5 GS/s, which was the limit of our measurement setup. The expected ramp-wave outputs at a sampling rate of 24 GS/s are also obtained. The total power consumption is as low as 0.88 W with a supply voltage of -4.0 V. This DAC can provide low-power operation and a higher sampling rate than any other previously reported DAC with a resolution of 5 bits or more.