The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] differential-mode(10hit)

1-10hit
  • Evaluation Method of Voltage and Current Distributions on Asymmetrical and Equi-Length Differential-Paired Lines

    Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER

      Pubricized:
    2020/05/27
      Vol:
    E103-C No:11
      Page(s):
    597-604

    For actual multi-channel differential signaling system, the ideal balance or symmetrical topology cannot be established, and hence, an imbalance component is excited. However a theoretical analysis method of evaluating the voltage and current distribution on the differential-paired lines, which allows to anticipate EM radiation at the design stage and to study possible means for suppressing imbalance components, has not been implemented. To provide the basic considerations for electromagnetic (EM) radiation from practical asymmetrical differential-paired lines structure with equi-length routing used in high-speed board design, this paper newly proposes an analytical method for evaluating the voltage and current at any point on differential-paired lines by expressing the differential paired-lines with an equivalent source circuit and an equivalent load circuit. The proposed method can predict S-parameters, distributions of voltage and current and EM radiation with sufficient accuracy. In addition, the proposed method provides enough flexibility for different geometric parameters and can be used to develop physical insights and design guidelines. This study has successfully established a basic method to effectively predict signal integrity and EM interference issues on a differential-paired lines.

  • Transmission Characteristics and Shielding Effectiveness of Shielded-Flexible Printed Circuits for Differential-Signaling

    Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    766-773

    To provide basic considerations for the realization of method for suppressing the EMI from differential-paired lines on flexible printed circuits (FPC), the characteristics of the SI performance and shielding effectiveness (SE) of shielded-flexible printed circuits for differential-signaling are investigated in this paper experimentally and by a numerical modeling. Firstly, transmission characteristics of TDR measurement and frequency response of |Sdd21| are discussed, from view point of signal integrity. Secondly, as the characteristics of the SE performance for EMI, frequency responses of magnetic field are investigated. Although placement of conductive shield near the paired-lines decreases characteristics impedance, |Sdd21| for the “with Cu 5.5 µm-thickness copper shield” is not deteriorated compared with “without shield” and sufficient SE performance for magnetic field can be established. But, thin-shield deteriorates SI as well as SE performances. The frequency response of |Sdd21| at higher frequencies for the “Ag 0.1 µm” case has the steep loss roll off. A reflection loss resulted from impedance-mismatching is not dominant factor of the losses. The dominant factor may be magnetic field leakage due to very thin-conductive shield.

  • Current Controlled MOS Current Mode Logic with Auto-Detection of Threshold Voltage Fluctuation

    Hyoungjun NA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    617-626

    In this paper, a theoretical analysis of current-controlled (CC-) MOS current mode logic (MCML) is reported. Furthermore, the circuit performance of the CC-MCML with the auto-detection of threshold voltage (Vth) fluctuation is evaluated. The proposed CC-MCML with the auto-detection of Vth fluctuation automatically suppresses the degradation of circuit performance induced by the Vth fluctuations of the transistors automatically, by detecting these fluctuations. When a Vth fluctuation of ± 0.1 V occurs on the circuit, the cutoff frequency of the circuit is increased from 0 Hz to 3.5 GHz by using the proposed CC-MCML with the auto-detection of Vth fluctuation.

  • Prediction of EM Radiation from a PCB Driven by a Connected Feed Cable

    Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1920-1928

    Printed circuit boards (PCBs) driven by a connected feed cable are considered to be one of the main sources of the electromagnetic interference (EMI) from electronic devices. In this paper, a method for predicting the electromagnetic (EM) radiation from a PCB driven by a connected feed cable at up to gigahertz frequencies is proposed and demonstrated. The predictive model is based on the transmission line theory and current- and voltage-driven CM generation mechanisms with consideration of antenna impedance. Frequency responses of differential-mode (DM) and common-mode (CM) currents and far-electric field were investigated experimentally and with finite-difference time-domain (FDTD) modeling. First, the dominant component in total EM radiation from the PCB was identified by using the Source-Path-Antenna model. Although CM can dominate the total radiation at lower frequencies, DM is the dominant component above 3 GHz. Second, the method for predicting CM component at lower frequencies is proposed. And its validity was discussed by comparing FDTD calculated and measured results. Specifically, the relationship between the CM current and the terminating resistor was focused as important consequence for the prediction. Good agreement between the measured and predicted results shows the validity of the predicted results. The proposed model can predict CM current with sufficient accuracy, and also identify the primary coupling-mechanism of CM generation. Then far-electric field was predicted by using the proposed method, and it was demonstrated that outline of the frequency response of the undesired EM radiation from the PCB driven by the connected feed cable can be predicted with engineering accuracy (within 6 dB) up to 18 GHz. Finally, as example of application of equivalent circuit model to EMC design, effect of the width of the ground plane was predicted and discussed. The equivalent circuit model provides enough flexibility for different geometrical parameters and increases our ability to provide insights and design guidelines.

  • Electromagnetic Radiation Resulting from Two Signal Traces on a Printed Circuit Board

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Signal Transmission

      Vol:
    E89-C No:8
      Page(s):
    1217-1223

    To provide basic considerations for the realization of methods for predicting the electromagnetic (EM) radiation from a printed circuit board (PCB) with plural signal traces driven in the even-mode, the characteristics of the EM radiation resulting from two signal traces on a PCB are investigated experimentally and by numerical modeling. First, the frequency responses of common-mode (CM) current and far-electric field as electromagnetic interference (EMI) are discussed. As the two traces are moved closer to the PCB edge, CM current and far-electric field increase. The frequency responses in the two signal trace case can be identified using insights gained from the single trace case. Second, to understand the details of the increase in CM current, the distribution of the current density on the ground plane is calculated and discussed. Although crosstalk ensues, the rule for PCB design is to keep two high-speed traces on the interior of the PCB whenever possible, from the point of view of EM radiation. Finally, an empirical formula to quantify the relationship between the positions of two traces and CM current is provided and discussed by comparing four different models. Results calculated with the empirical formula and finite-difference time-domain (FDTD) modeling are in good agreement, which indicates the empirical formula may be useful for developing EMI design guidelines.

  • Correspondence of Common- and Differential-Mode Components on EM Radiation from Surface Microstrip Line Structure

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Signal Transmission

      Vol:
    E88-C No:8
      Page(s):
    1688-1695

    It has been demonstrated that a common-mode (CM) current can dominate the EMI processes up to 1 GHz, despite the fact that a CM current is smaller than a differential-mode (DM) current. However, this description is insufficient to describe behavior above 1 GHz. In this paper, the correspondence of CM and DM components for total electromagnetic (EM) radiation from a printed circuit board (PCB) with surface microstrip line, which is commonly used in microwave integrated circuits, at gigahertz frequency is studied experimentally and with finite-difference time-domain (FDTD) modeling. In order to characterize the EM radiation, the frequency response of the CM current, the electric field near the PCB, and the electric far field are investigated. First, the frequency response of the CM current, near and far-fields for the PCB with an attached feed cable are compared up to 5 GHz. Although the CM current decreases above a few gigahertz, near and far electric fields increase as the frequency becomes higher. Second, in order to distinguish between CM and DM radiation at high frequency, the frequency response and the angle pattern of the far-field from a PCB without the feed cable are discussed. The results show that radiation up to 1 GHz is related to the CM component. However, depending on polarization and PCB geometry, radiation may be dominated by the DM rather than the CM component. The results indicate that the DM component may be more significant relative to the CM component, and the increase in EM radiation can not be predicted from only the frequency response of CM current. Therefore, identifying the dominant component is essential for suppressing the EM radiation. This study is a basic consideration to realize a technique which is effective on the suppression of the EM radiation from the PCB with an attached feed cable.

  • Phase Compensation Technique for a Low-Power Transconductor

    Rui ITO  Tetsuro ITAKURA  Tadashi ARAI  

     
    LETTER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1263-1266

    In a direct conversion receiver for mobile communication, it is important to reduce power dissipation. Because a low pass filter in a direct conversion receiver must suppress adjacent channel signals, a high order and high power dissipation is often required in the low pass filter. We propose a new phase compensation technique suitable for a low power transconductor used in a GmC filter as a low pass filter. The new phase compensation technique reduces 10% of power dissipation.

  • A New Design Concept for Balanced-Type SAW Filters Using a Common-Mode Signal Suppression Circuit

    Hiroyuki NAKAMURA  Toshio ISHIZAKI  Toshifumi NAKATANI  Shigeru TSUZUKI  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    28-33

    A new design concept for a common-mode signal suppression circuit for a balanced-type filter has been investigated. The degradation mechanism of the balance characteristics was studied. The degradation is caused by the common-mode signals combined with the differential-mode signals in the balanced terminals. The concept employed is the reduction of the common-mode signal using a common-mode signal suppression circuit, connected to the balanced terminals. A serial resonance circuit is formed, in which the common-mode signals are shorted to ground. The circuit was applied to the balanced-type Surface Acoustic Wave (SAW) filter. The improvement in balance characteristics, without increasing in the insertion loss, was confirmed by experiments for Global System Mobile (GSM) applications.

  • Modeling the Imperfect Ground of Printed Circuit Boards Based on TEM Assumption

    I-Fong CHEN  Ching-Wen HSUE  Ming-Chih KUAN  Wen-Yuh LUO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:9
      Page(s):
    2124-2129

    The radiation emission in far zones from printed circuit boards (PCBs) is obtained by treating lines on PCBs as transmission lines and calculating the far-field emission due to current distribution on lines. In this paper, we present a more precise circuit model, based on TEM assumption, to decompose the total current into differential-mode current and common-mode current. This circuit model is based on transmission line model, but it considers the effect of ground trace. The finite size ground trace can be viewed as an inductive reactance. A knowledge of the net inductance of the ground trace can aid in the analysis and investigation of PCBs emission. We show the derived equations of the modified transmission lines for the geometrics of practical interest. As time-varying current passes through such ground trace, a voltage drop due to the inductance of the trace will act as a source of the common-mode current. Furthermore, charge stored in capacitance between signal and ground traces will cause the current pulses returning to their source. The magnitudes of currents are slightly unequal in the signal and ground traces, which can cause common-mode current to flow. An unbalanced circuit on a PCB constructed with signal and ground trace pairs will radiate as an asymmetric folded-dipole. By antenna theory, the contribution of differential-mode and common-mode currents to radiated emission of PCBs can be calculated. In addition, comparisons between experimental results and calculation results are also given.

  • A Realization of a Low-Voltage Differential-Output OTA Using a Simple CM Amplifier

    Fujihiko MATSUMOTO  Yasuaki NOGUCHI  

     
    LETTER

      Vol:
    E81-A No:2
      Page(s):
    261-264

    A technique for realization of low-voltage OTAs is presented in this letter. A very low-voltage differential-output OTA is realized by employing a new common-mode amplifier in the common-mode feedback circuit. The results of PSpice simulations are shown. The proposed OTA can operate at a 0. 9 V supply voltage.