The search functionality is under construction.

Keyword Search Result

[Keyword] dipole antenna(23hit)

1-20hit(23hit)

  • Low-Profile Supergain Antenna Composed of Asymmetric Dipole Elements Backed by Planar Reflector for IoT Applications Open Access

    Suguru KOJIMA  Takuji ARIMA  Toru UNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    884-890

    This paper proposes a low-profile unidirectional supergain antenna applicable to wireless communication devices such as mobile terminals, the Internet of Things and so on. The antennas used for such systems are required to be not only electrically low-profile but also unsusceptible to surrounding objects such as human body and/or electrical equipment. The proposed antenna achieves both requirements due to its supergain property using planar elements and a closely placed planar reflector. The primary antenna is an asymmetric dipole type, and consists of a monopole element mounted on an edge of a rectangular conducting plane. Both elements are placed on a dielectric substrate backed by the planar reflector. It is numerically and experimentally shown that the supergain property is achieved by optimizing the geometrical parameters of the antenna. It is also shown that the impedance characteristics can be successfully adjusted by changing the lengths of the ground plane element and the monopole element. Thus, no additional impedance matching circuit is necessary. Furthermore, it is shown that surrounding objects have insignificant impact on the antenna performance.

  • Broadband Sleeve Dipole Antenna with Consistent Gain in the Horizontal Direction

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1061-1068

    This paper improves radiation patterns and impedance matching of a broadband sleeve dipole antenna. A broadband sleeve dipole antenna is designed and the effect of the structure parameters on the |S11| characteristics is calculated. Current distributions of the resonance frequencies are calculated. A broadband sleeve dipole antenna with plate element is proposed. Better impedance matching is obtained by adjusting the size of the plate element. The nulls of the radiation patterns are reduced at high frequencies and the gain in the horizontal direction is improved.

  • Capsule Antenna Design Based on Transmission Factor through the Human Body

    Yang LI  Hiroyasu SATO  Qiang CHEN  

     
    PAPER-Antennas

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    357-363

    To design antennas for ingestible capsule endoscope systems, the transmission factors of dipole and loop antennas placed in the torso-shaped phantom filled with deionized water or human body equivalent liquid (HBEL) are investigated by numerical and experimental study. The S-parameter method is used to evaluate transmission characteristics through a torso-shaped phantom in a broadband frequency range. Good agreement of S-parameters between measured results and numerical analysis is observed and the transmission factors for both cases are obtained. Comparison of the transmission factors between HBEL and deionized water is presented to explain the relation between conductivity and the transmission characteristics. Two types of antennas, dipole antenna and loop antenna are compared. In the case of a dipole antenna placed in deionized water, it is observed that the transmission factor decreases as conductivity increases. On the other hand, there is a local maximum in the transmission factor at 675 MHz in the case of HBEL. This phenomenon is not observed in the case of a loop antenna. The transmission factor of capsule dipole antenna and capsule loop antenna are compared and the guideline in designing capsule antennas by using transmission factor is also proposed.

  • Novel Design of Dual-Band Reconfigurable Dipole Antenna Using Lumped and Distributed Elements

    Shoichi ONODERA  Ryo ISHIKAWA  Akira SAITOU  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:7
      Page(s):
    1550-1557

    A frequency-reconfigurable dipole antenna, whose dual resonant frequencies are independently controlled, is introduced. The antenna's conductor consists of radiating conductors, lumped and distributed elements, and varactors. To design the antenna, current distribution, input impedance, and radiation power including higher-order modes, are analyzed for a narrow-angle sectorial antenna embedded with passive elements. To derive the formulae used, radiation power is analyzed in two ways: using Chu's equivalent circuit and the multipole expansion method. Numerical estimations of electrically small antennas show that dual-band antennas are feasible. The dual resonant frequencies are controlled with the embedded series and shunt inductors. A dual-band antenna is fabricated, and measured input impedances agree well with the calculated data. With the configuration, an electrically small 2.5-/5-GHz dual-band reconfig-urable antenna is designed and fabricated, where the reactance values for the series and shunt inductors are controlled with varactors, each connected in series to the inductors. Varying the voltages applied to the varactors varies the measured upper and lower resonant frequencies between 2.6 and 2.9GHz and between 5.1 and 5.3GHz, where the other resonant frequency is kept almost identical. Measured radiation patterns on the H-plane are almost omni-directional for both bands.

  • A Linearly and Circularly Polarized Double-Band Cross Spiral Antenna

    Mayumi MATSUNAGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:2
      Page(s):
    430-438

    A novel circularly and linearly polarized loop antenna is presented. A simple loop configuration, twisted like a cross shape, has achieved radiating wide beam circular polarization simultaneously with linear polarization in two close bands. This cross configuration brings good circular polarization to a loop antenna because it uses the transmission line mode of a folded dipole antenna. For these reasons, the antenna is named the Cross Spiral Antenna (CSA). In this paper, a basic structure and the principle of the CSA radiating circular polarization with one port feeding is explained. The prototype CSA, which is tuned to around 1.57GHz and 1.6GHz, is tested for verifying the effectiveness of the suggested antenna configuration.

  • New Numerical Target SAR Values and an Optimized Flat Phantom for SAR Validation Tests in the 150MHz Band

    Dong-Geun CHOI  Ki-Hwea KIM  Jaehoon CHOI  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:7
      Page(s):
    1323-1332

    New target specific absorption rate (SAR) values, calculated using a proposed reference dipole antenna and the reference flat phantom, are presented for an SAR validation test at 150MHz. The reference flat phantom recommended by the International Electrotechnical Commission (IEC) standard for 150MHz requires a significant amount of liquid owing to its large size. We conduct a numerical analysis in order to reduce the size of the flat phantom. The optimum size of the flat phantom is 780 (L1) × 540 (W) × 200 (H)mm3, which is approximately a 64% reduction in volume compared to the reference flat phantom. The length of the reference dipole antenna required for the optimized flat phantom (extrapolated from the reference values at 300MHz) becomes 760mm. The calculated and measured return losses (S11) of the antenna at 150MHz are 24.1dB and 22dB, respectively. The calculated and measured results for the return loss of the dipole antenna agree well and satisfy the IEC standard (> 20dB). The target SAR values derived from the numerical analysis are 1.08W/kg for 1g of tissue and 0.77W/kg for 10g of tissue for an SAR validation test at 150MHz.

  • Prediction of Common-Mode Radiated Emission of PCB with an Attached Cable Using Imbalance Difference Model

    Nan ZHANG  Jong-hyeon KIM  Soo-jung RYU  Wansoo NAH  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:4
      Page(s):
    638-645

    An imbalance difference model has been developed to estimate the common-mode radiated emission of a PCB with an attached cable. This model, however, requires significant computation time for full-wave simulation, especially if the attached cable is long, even with a powerful computer configuration. To solve this problem, a method that approximates the imbalance difference model as an equivalent asymmetrical dipole antenna is proposed in this paper. The common-mode radiated emission can be predicted using a line integration of the common-mode current distribution which is directly estimated by the asymmetrical antenna model. Unlike existing methods, the proposed method avoids the circuit construction normally used to measure the common-mode current, and is still able to accurately predict the maximum common-mode radiation. The effectiveness of the proposed method is verified by comparing the predicted results with the 3D full-wave simulation and the measured data gathered in an anechoic chamber.

  • Wideband 3D Folded Dipole Antenna with Feed Line for Small Terminal

    Tsutomu ITO  Mio NAGATOSHI  Shingo TANAKA  Hisashi MORISHITA  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2410-2416

    Folded dipole antenna with feed line (FDAFL) whose relative bandwidth is 65% (VSWR≤3) has been reported as a wideband planar antenna for a small terminal. However, this antenna is constructed outside of the ground plane (50×80mm2) by 12mm. In this study, we analyze the antenna configurations of FDAFL in 3D so that the antenna does not protrude from the ground plane as much as possible. Two different 3D antenna models derived from FDAFL are investigated. The first model is folded over the ground plane, and the second one is folded outside of the ground plane. The relative bandwidth, the VSWR characteristics and radiation patterns are studied. As a result, it is confirmed that antenna prominence could be reduced and broadband characteristics over 74% and 83% are obtained by the 3D models, respectively, which are wider than the bandwidth of conventional 2D model. Thus, FDAFL could be used in both 2D and 3D for a small terminal.

  • Broadband Characteristics of a Planar Folded Dipole Antenna with a Feed Line

    Mio NAGATOSHI  Shingo TANAKA  Satoru HORIUCHI  Hisashi MORISHITA  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1168-1173

    Various planar folded dipole antennas with feed lines are introduced and analyzed. With the added feed line, the planar folded dipole antenna has two resonance modes. Moreover, adjusting the spacing and width of the feed line improves the broadband characteristics of the antenna. The attached feed line has not only an impedance transforming characteristic but also a bandwidth transforming characteristic. The bandwidth transforming characteristic means that the feed line can broaden the bandwidth of folded dipole antenna. A way to reduce the antenna area is also studied, and the characteristics of the resulting compact antenna are analyzed.

  • Modified Printed Folded λ/2 Dipole Antenna for DVB Applications

    Chia-Mei PENG  I-Fong CHEN  Ching-Wen HSUE  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:10
      Page(s):
    2991-2994

    In this letter, we present a modified printed folded λ/2 dipole antenna design for Digital Video Broadcasting (DVB) applications in UHF band (470-862 MHz). The arms of dipole are meandered to yield an asymmetrical structure. Wideband operation is obtained by increasing dipole-area. The impedance matching of the dipole structure is obtained by inserting some slots on the dipole-arms. This antenna combines omni-directional radiation pattern and wide bandwidth in an easy-to-fabricate structure. The experimental results of the constructed prototype are presented.

  • Modal-Expansion Analysis of Electromagnetically Coupled Coaxial Dipole Antennas

    Zhongxiang SHEN  Quanxin WANG  Ke-Li WU  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1654-1661

    This paper presents a modal-expansion analysis of the electromagnetically coupled coaxial dipole antenna. The analysis of the antenna problem is initially simplified using the even-odd mode excitation and then the resultant half structure is divided into two parts; one is the characterization of a coaxial feeding network and the other is the modeling of a sleeve monopole antenna driven by a coaxial line. The formally exact modal-expansion method is employed to analyze both parts. The analysis of the sleeve monopole antenna is facilitated by introducing a perfectly conducting boundary at a distance from the monopole's top end. The current distribution and input impedance of the electromagnetically coupled coaxial dipole antenna are obtained by finding expansion coefficients through enforcing the continuity of tangential field components across regional interfaces and cascading the two parts together. Numerical results for the coaxial dipole antenna's radiation characteristics are presented and discussed.

  • Complex Antenna Factors of Resistor Loaded Dipole Antennas with Coaxial Cable Balun

    Ki-Chai KIM  Takashi IWASAKI  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1467-1471

    This letter presents the characteristics of complex antenna factors of a resistor loaded dipole antenna with a balun consisting of two coaxial feeders (coaxial cable balun). The resistor loading is used to realize dipole antennas with higher fidelity than unloaded dipole equivalents. The complex antenna factor for a resistor loaded dipole antenna with coaxial cable balun is derived by extending the power loss concepts. The numerical results show that the series resistor loaded dipole antenna offers higher fidelity than the unloaded dipole. The result of the calculated complex antenna factors are in good agreement with that of the measured results.

  • Investigation on 10 m Semi Anechoic Chamber by Using Grid-Ferrite and Open-Top Hollow Pyramidal EM Wave Absorber

    Hiroshi KURIHARA  Toshifumi SAITO  Yoshikazu SUZUKI  Kouji NAGATA  Masaharu ADACHI  

     
    PAPER

      Vol:
    E89-C No:1
      Page(s):
    16-23

    This paper investigates the 10 m semi anechoic chamber using a new type hybrid EM wave absorber consisted of the grid-ferrite and the open-top hollow pyramidal EM wave absorber. We designed a new type hybrid EM wave absorber, which length could be slightly realized 65 cm. The 10 m semi anechoic chamber was constructed in the size of L21.5 mW13.5 mH8.9 m as the result of the ray-tracing simulation using this absorber. Then, the site attenuation in the constructed anechoic chamber was measured by using the broadband calculable dipole antennas. As the result, the maximum deviations between the measured site attenuation and theoretical calculated one were obtained within 3.6 dB in the frequency range of 30 MHz to 300 MHz. It was confirmed the validity of a new type hybrid EM wave absorber. Moreover, it was confirmed that the measured results agree with the ray-tracing simulation results, in which the differences are about 1.5 dB.

  • An Aperture-Coupled Patch Antenna on Modified-Shape Ground-Plane

    Nobuhiro KUGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:6
      Page(s):
    2597-2603

    An aperture-coupled patch antenna on a modified-shape groundplane is proposed in this paper. It is applicable to the H-plane array without perpendicular feed structure. Availability of the depth-area under antenna-substrate is effectively improved by using radiation from the T-shaped element, while the advantage of aperture-coupled antenna in suppressing the spurious-feed-network radiation remains effective. Basic characteristics of the antenna are investigated through the numerical examination by using FDTD-method. As a result, the increased bandwidth is also obtained, which is observed as dual-resonance characteristics due to the T-shaped element and the aperture-fed patch. A H-plane array of the proposed element incorporating a probe-fed patch antenna is also presented to show an potential as a polarization diversity antenna.

  • Extension of the Quasi-Static Approximation Technique to a Long Dipole Antenna for Improvement of the Accuracy of FDTD Calculation

    Pornanong PONGPAIBOOL  Toru UNO  Takuji ARIMA  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:11
      Page(s):
    3402-3405

    A high accuracy numerical technique based on the Finite Difference Time Domain (FDTD) method for a long dipole antenna analysis is presented. An improvement of the accuracy can be achieved without reducing the cell size by incorporating a quasi-static field behavior into the FDTD update equations. A closed form of the quasi-static field is obtained from a low frequency limit of a sinusoidal current distribution. The validity of the proposed algorithm is confirmed even when the length of dipole antenna is longer than half wavelength by comparing the results with the Method of Moment.

  • Spatial Correlation Function Analysis of a Dipole Antenna Array in Front of a Ground Plane Reflector for Sectorized Cellular Communications

    Ching-Tai CHIANG  Rong-Ching WU  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:11
      Page(s):
    3394-3397

    This letter develops a practical sectorized antenna array using center-fed half-wavelength dipole antennas that are parallel to and a distance in front of a large ground plane reflector. Each element in the array is designed to provide coverage to isolate each 120sector from adjacent sectors. We derive a closed-form expression for spatial correlation function that can be used as guides in evaluating the effects of array spatial correlation on diversity performance in sectorized cellular communications.

  • Estimation of Current Distribution on Cellular Telephone Antennas Affected by Human Body Interaction

    Eiji HANKUI  Takashi HARADA  Toshihide KURIYAMA  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:9
      Page(s):
    1260-1263

    This paper describes an estimation method for an antenna current distribution including the interaction between a cellular telephone antenna and a human body. In our experiments, current distributions on a half wavelength dipole antenna at 900 MHz are evaluated by measuring the magnetic field near the antenna, when a human head-sized phantom model is located near the dipole antenna. From the experiments, the antenna current around a feed point is confirmed to increase by 30% due to the interaction effect. This result shows that antennas of portable phones should be designed by considering the effect of a human presence for the development of the higher performance antenna, and our estimation method will contribute to optimizing the design of such antennas.

  • Triple-Bands Broad Bandwidth Dipole Antenna with Multiple Parasitic Elements

    Toru FUKASAWA  Hiroyuki OHMINE  Kazuhito MIYASHITA  Yoshiyuki CHATANI  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2476-2481

    This paper proposes serially arranged two parasitic elements above a fed dipole to obtain broad bandwidth in resonant frequency of a parasitic element. The above antenna can be used in triple-bands with one feed point. Its design method using FDTD is also presented. Next, application of the triple-bands antenna is proposed for 3-sector base station antenna. Its characteristics of return loss and radiation patterns are indicated. Calculated values are in good agreement with measured ones.

  • The Moment Method Analysis as a Simulator Technique for a Dipole Antenna Using Wavelets

    Shigeo KAWASAKI  Harunobu SEITA  Takuo MORIMOTO  

     
    PAPER-Electromagnetics Simulation Techniques

      Vol:
    E84-C No:7
      Page(s):
    914-922

    As a solver in a simulator, advantages of use of a wavelet function were investigated for analysis of a dipole antenna using the Moment Method. Realization of a sparse matrix due to orthogonality and due to inherent nature of the wavelet is confirmed by observing an impedance matrix using each Daubechies' wavelet. Calculated results of the input impedance, the impedance matrix, and the current distribution are compared in variation of the wavelet in two integral equations for a dipole antenna. Use of the Daubechies' wavelet of the high number with a small matrix and a threshold in the Hallen's Integral Equation is suitable for the reduction of the matrix size and of the calculation cost.

  • Near-Field Shielding Effect of Oval Human Model for Dipole Antenna Using High-Loss Dielectric and Magnetic Materials

    Shinichiro NISHIZAWA  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:11
      Page(s):
    2513-2518

    In this study, the shielding effect of high-loss dielectric and magnetic materials themselves and also an oval human model placed behind these material, were investigated by the FDTD method, for near- and far-field exposure, using the half-wave length dipole antenna. According to the results, a high-loss magnetic material showed a large shielding effect (average 20 dB) compared to the high-loss dielectric material, for near- and far-field shields. Also, the reduction of the shielding effect was small (2 dB) for the high-loss magnetic material, while it was large for the high loss dielectric material, on decreasing the distance between the antenna and shield. Moreover, the variation of the shielding effect on a human model placed behind the shield was small (0.2-1.5 dB) for the high-loss magnetic material, but large for the high-loss dielectric material. This is similar to the results of the shield materials themselves, for the close antenna-shield and human-shield distances, respectively.

1-20hit(23hit)