The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] edge(512hit)

101-120hit(512hit)

  • Enumerating Highly-Edge-Connected Spanning Subgraphs

    Katsuhisa YAMANAKA  Yasuko MATSUI  Shin-ichi NAKANO  

     
    PAPER-Graph algorithms

      Vol:
    E102-A No:9
      Page(s):
    1002-1006

    In this paper, we consider the problem of enumerating spanning subgraphs with high edge-connectivity of an input graph. Such subgraphs ensure multiple routes between two vertices. We first present an algorithm that enumerates all the 2-edge-connected spanning subgraphs of a given plane graph with n vertices. The algorithm generates each 2-edge-connected spanning subgraph of the input graph in O(n) time. We next present an algorithm that enumerates all the k-edge-connected spanning subgraphs of a given general graph with m edges. The algorithm generates each k-edge-connected spanning subgraph of the input graph in O(mT) time, where T is the running time to check the k-edge-connectivity of a graph.

  • A Fast Packet Loss Detection Mechanism for Content-Centric Networking

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1842-1852

    In this paper, we propose a packet loss detection mechanism called Interest ACKnowledgement (ACK). Interest ACK provides information on the history of successful Interest packet receptions at a repository (i.e., content provider); this information is conveyed to the corresponding entity (i.e., content consumer) via the header of Data packets. Interest ACKs enable the entity to quickly and accurately detect Interest and Data packet losses in the network. We conduct simulations to investigate the effectiveness of Interest ACKs under several scenarios. Our results show that Interest ACKs are effective for improving the adaptability and stability of CCN with window-based flow control and that packet losses at the repository can be reduced by 10%-20%. Moreover, by extending Interest ACK, we propose a lossy link detection mechanism called LLD-IA (Lossy Link Detection with Interest ACKs), which is a mechanism for an entity to estimate the link where the packet was discarded in a network. Also, we show that LLD-IA can effectively detect links where packets were discarded under moderate packet loss ratios through simulation.

  • Card-Based Physical Zero-Knowledge Proof for Kakuro

    Daiki MIYAHARA  Tatsuya SASAKI  Takaaki MIZUKI  Hideaki SONE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1072-1078

    Kakuro is a popular logic puzzle, in which a player fills in all empty squares with digits from 1 to 9 so that the sum of digits in each (horizontal or vertical) line is equal to a given number, called a clue, and digits in each line are all different. In 2016, Bultel, Dreier, Dumas, and Lafourcade proposed a physical zero-knowledge proof protocol for Kakuro using a deck of cards; their proposed protocol enables a prover to convince a verifier that the prover knows the solution of a Kakuro puzzle without revealing any information about the solution. One possible drawback of their protocol would be that the protocol is not perfectly extractable, implying that a prover who does not know the solution can convince a verifier with a small probability; therefore, one has to repeat the protocol to make such an error become negligible. In this paper, to overcome this, we design zero-knowledge proof protocols for Kakuro having perfect extractability property. Our improvement relies on the ideas behind the copy protocols in the field of card-based cryptography. By executing our protocols with a real deck of physical playing cards, humans can practically perform an efficient zero-knowledge proof of knowledge for Kakuro.

  • Assessing Lightweight Virtualization for Security-as-a-Service at the Network Edge Open Access

    Abderrahmane BOUDI  Ivan FARRIS  Miloud BAGAA  Tarik TALEB  

     
    INVITED PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    970-977

    Accounting for the exponential increase in security threats, the development of new defense strategies for pervasive environments is acquiring an ever-growing importance. The expected avalanche of heterogeneous IoT devices which will populate our industrial factories and smart houses will increase the complexity of managing security requirements in a comprehensive way. To this aim, cloud-based security services are gaining notable impetus to provide security mechanisms according to Security-as-a-Service (SECaaS) model. However, the deployment of security applications in remote cloud data-centers can introduce several drawbacks in terms of traffic overhead and latency increase. To cope with this, Edge Computing can provide remarkable advantages avoiding long routing detours. On the other hand, the limited capabilities of edge node introduce potential constraints in the overall management. This paper focuses on the provisioning of virtualized security services in resource-constrained edge nodes by leveraging lightweight virtualization technologies. Our analysis aims at shedding light on the feasibility of container-based security solutions, thus providing useful guidelines towards the orchestration of security at the edge. Our experiments show that the overhead introduced by the containerization is very light.

  • Incorporation of Faulty Prior Knowledge in Multi-Target Device-Free Localization

    Dongping YU  Yan GUO  Ning LI  Qiao SU  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:3
      Page(s):
    608-612

    As an emerging and promising technique, device-free localization (DFL) has drawn considerable attention in recent years. By exploiting the inherent spatial sparsity of target localization, the compressive sensing (CS) theory has been applied in DFL to reduce the number of measurements. In practical scenarios, a prior knowledge about target locations is usually available, which can be obtained by coarse localization or tracking techniques. Among existing CS-based DFL approaches, however, few works consider the utilization of prior knowledge. To make use of the prior knowledge that is partly or erroneous, this paper proposes a novel faulty prior knowledge aided multi-target device-free localization (FPK-DFL) method. It first incorporates the faulty prior knowledge into a three-layer hierarchical prior model. Then, it estimates location vector and learns model parameters under a variational Bayesian inference (VBI) framework. Simulation results show that the proposed method can improve the localization accuracy by taking advantage of the faulty prior knowledge.

  • Efficient Algorithms to Augment the Edge-Connectivity of Specified Vertices by One in a Graph

    Satoshi TAOKA  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    379-388

    The k-edge-connectivity augmentation problem for a specified set of vertices (kECA-SV for short) is defined by “Given a graph G=(V, E) and a subset Γ ⊆ V, find a minimum set E' of edges such that G'=(V, E ∪ E') has at least k edge-disjoint paths between any pair of vertices in Γ.” Let σ be the edge-connectivity of Γ (that is, G has at least σ edge-disjoint paths between any pair of vertices in Γ). We propose an algorithm for (σ+1)ECA-SV which is done in O(|Γ|) maximum flow operations. Then the time complexity is O(σ2|Γ||V|+|E|) if a given graph is sparse, or O(|Γ||V||BG|log(|V|2/|BG|)+|E|) if dense, where |BG| is the number of pairs of adjacent vertices in G. Also mentioned is an O(|V||E|+|V|2 log |V|) time algorithm for a special case where σ is equal to the edge-connectivity of G and an O(|V|+|E|) time one for σ ≤ 2.

  • Zero-Knowledge Identification Scheme Using LDPC Codes

    Haruka ITO  Masanori HIROTOMO  Youji FUKUTA  Masami MOHRI  Yoshiaki SHIRAISHI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2688-2697

    Recently, IoT compatible products have been popular, and various kinds of things are IoT compliant products. In these devices, cryptosystems and authentication are not treated properly, and security measures for IoT devices are not sufficient. Requirements of authentication for IoT devices are power saving and one-to-many communication. In this paper, we propose a zero-knowledge identification scheme using LDPC codes. In the proposed scheme, the zero-knowledge identification scheme that relies on the binary syndrome decoding problem is improved and the computational cost of identification is reduced by using the sparse parity-check matrix of the LDPC codes. In addition, the security level, computational cost and safety of the proposed scheme are discussed in detail.

  • Mobile Network Architectures and Context-Aware Network Control Technology in the IoT Era Open Access

    Takanori IWAI  Daichi KOMINAMI  Masayuki MURATA  Ryogo KUBO  Kozo SATODA  

     
    INVITED PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2083-2093

    As IoT services become more popular, mobile networks will have to accommodate a wide variety of devices that have different requirements such as different bandwidth limitations and latencies. This paper describes edge distributed mobile network architectures for the IoT era based on dedicated network technology and multi-access edge computing technology, which have been discussed in 3GPP and ETSI. Furthermore, it describes two context-aware control methods that will make mobile networks on the network architecture more efficient, reliable, and real-time: autonomous and distributed mobility management and bandwidth-guaranteed transmission rate control in a networked control system.

  • An Edge Detection Method Based on Wavelet Transform at Arbitrary Angles

    Su LIU  Xingguang GENG  Yitao ZHANG  Shaolong ZHANG  Jun ZHANG  Yanbin XIAO  Chengjun HUANG  Haiying ZHANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2018/06/13
      Vol:
    E101-D No:9
      Page(s):
    2392-2400

    The quality of edge detection is related to detection angle, scale, and threshold. There have been many algorithms to promote edge detection quality by some rules about detection angles. However these algorithm did not form rules to detect edges at an arbitrary angle, therefore they just used different number of angles and did not indicate optimized number of angles. In this paper, a novel edge detection algorithm is proposed to detect edges at arbitrary angles and optimized number of angles in the algorithm is introduced. The algorithm combines singularity detection with Gaussian wavelet transform and edge detection at arbitrary directions and contain five steps: 1) An image is divided into some pixel lines at certain angle in the range from 45° to 90° according to decomposition rules of this paper. 2) Singularities of pixel lines are detected and form an edge image at the certain angle. 3) Many edge images at different angles form a final edge images. 4) Detection angles in the range from 45° to 90° are extended to range from 0° to 360°. 5) Optimized number of angles for the algorithm is proposed. Then the algorithm with optimized number of angles shows better performances.

  • Entity Ranking for Queries with Modifiers Based on Knowledge Bases and Web Search Results

    Wiradee IMRATTANATRAI  Makoto P. KATO  Katsumi TANAKA  Masatoshi YOSHIKAWA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/06/18
      Vol:
    E101-D No:9
      Page(s):
    2279-2290

    This paper proposes methods of finding a ranked list of entities for a given query (e.g. “Kennin-ji”, “Tenryu-ji”, or “Kinkaku-ji” for the query “ancient zen buddhist temples in kyoto”) by leveraging different types of modifiers in the query through identifying corresponding properties (e.g. established date and location for the modifiers “ancient” and “kyoto”, respectively). While most major search engines provide the entity search functionality that returns a list of entities based on users' queries, entities are neither presented for a wide variety of search queries, nor in the order that users expect. To enhance the effectiveness of entity search, we propose two entity ranking methods. Our first proposed method is a Web-based entity ranking that directly finds relevant entities from Web search results returned in response to the query as a whole, and propagates the estimated relevance to the other entities. The second proposed method is a property-based entity ranking that ranks entities based on properties corresponding to modifiers in the query. To this end, we propose a novel property identification method that identifies a set of relevant properties based on a Support Vector Machine (SVM) using our seven criteria that are effective for different types of modifiers. The experimental results showed that our proposed property identification method could predict more relevant properties than using each of the criteria separately. Moreover, we achieved the best performance for returning a ranked list of relevant entities when using the combination of the Web-based and property-based entity ranking methods.

  • A New Interpretation of Physical Optics Approximation from Surface Equivalence Theorem

    Hieu Ngoc QUANG  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:8
      Page(s):
    664-670

    In this study, the electromagnetic scatterings from conducting bodies have been investigated via a surface equivalence theorem. When one formulates equivalent electric and magnetic currents from geometrical optics (GO) reflected field in the illuminated surface and GO incident field in the shadowed surface, it has been found that the asymptotically derived radiation fields are found to be the same as those formulated from physical optics (PO) approximation.

  • Design and Implementation of Deep Neural Network for Edge Computing

    Junyang ZHANG  Yang GUO  Xiao HU  Rongzhen LI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    1982-1996

    In recent years, deep learning based image recognition, speech recognition, text translation and other related applications have brought great convenience to people's lives. With the advent of the era of internet of everything, how to run a computationally intensive deep learning algorithm on a limited resources edge device is a major challenge. For an edge oriented computing vector processor, combined with a specific neural network model, a new data layout method for putting the input feature maps in DDR, rearrangement of the convolutional kernel parameters in the nuclear memory bank is proposed. Aiming at the difficulty of parallelism of two-dimensional matrix convolution, a method of parallelizing the matrix convolution calculation in the third dimension is proposed, by setting the vector register with zero as the initial value of the max pooling to fuse the rectified linear unit (ReLU) activation function and pooling operations to reduce the repeated access to intermediate data. On the basis of single core implementation, a multi-core implementation scheme of Inception structure is proposed. Finally, based on the proposed vectorization method, we realize five kinds of neural network models, namely, AlexNet, VGG16, VGG19, GoogLeNet, ResNet18, and performance statistics and analysis based on CPU, gtx1080TI and FT2000 are presented. Experimental results show that the vector processor has better computing advantages than CPU and GPU, and can calculate large-scale neural network model in real time.

  • Character Feature Learning for Named Entity Recognition

    Ping ZENG  Qingping TAN  Haoyu ZHANG  Xiankai MENG  Zhuo ZHANG  Jianjun XU  Yan LEI  

     
    LETTER

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1811-1815

    The deep neural named entity recognition model automatically learns and extracts the features of entities and solves the problem of the traditional model relying heavily on complex feature engineering and obscure professional knowledge. This issue has become a hot topic in recent years. Existing deep neural models only involve simple character learning and extraction methods, which limit their capability. To further explore the performance of deep neural models, we propose two character feature learning models based on convolution neural network and long short-term memory network. These two models consider the local semantic and position features of word characters. Experiments conducted on the CoNLL-2003 dataset show that the proposed models outperform traditional ones and demonstrate excellent performance.

  • Single-Image 3D Pose Estimation for Texture-Less Object via Symmetric Prior

    Xiaoyuan REN  Libing JIANG  Xiaoan TANG  Junda ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/04/10
      Vol:
    E101-D No:7
      Page(s):
    1972-1975

    Extracting 3D information from a single image is an interesting but ill-posed problem. Especially for those artificial objects with less texture such as smooth metal devices, the decrease of object detail makes the problem more challenging. Aiming at the texture-less object with symmetric structure, this paper proposes a novel method for 3D pose estimation from a single image by introducing implicit structural symmetry and context constraint as priori-knowledge. Firstly, by parameterized representation, the texture-less object is decomposed into a series of sub-objects with regular geometric primitives. Accordingly, the problem of 3D pose estimation is converted to a parameter estimation problem, which is implemented by primitive fitting algorithm. Then, the context prior among sub-objects is introduced for parameter refinement via the augmentedLagrange optimization. The effectiveness of the proposed method is verified by the experiments based on simulated and measured data.

  • Reviving Identification Scheme Based on Isomorphism of Polynomials with Two Secrets: a Refined Theoretical and Practical Analysis

    Bagus SANTOSO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:5
      Page(s):
    787-798

    The isomorphism of polynomials with two secret (IP2S) problem is one candidate of computational assumptions for post-quantum cryptography. The idea of identification scheme based on IP2S is firstly introduced in 1996 by Patarin. However, the scheme was not described concretely enough and no more details are provided on how to transcribe the idea into a real-world implementation. Moreover, the security of the scheme has not been formally proven and the originally proposed security parameters are no longer secure based on the most recent research. In this paper, we propose a concrete identification scheme based on IP2S with the idea of Patarin as the starting point. We provide formal security proof of the proposed scheme against impersonation under passive attack, sequential active attack, and concurrent active attack. We also propose techniques to reduce the implementation cost such that we are able to cut the storage cost and average communication cost to an extent that under parameters for the standard 80-bit security, the scheme is implementable even on the lightweight devices in the current market.

  • Modeling Complex Relationship Paths for Knowledge Graph Completion

    Ping ZENG  Qingping TAN  Xiankai MENG  Haoyu ZHANG  Jianjun XU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/02/20
      Vol:
    E101-D No:5
      Page(s):
    1393-1400

    Determining the validity of knowledge triples and filling in the missing entities or relationships in the knowledge graph are the crucial tasks for large-scale knowledge graph completion. So far, the main solutions use machine learning methods to learn the low-dimensional distributed representations of entities and relationships to complete the knowledge graph. Among them, translation models obtain excellent performance. However, the proposed translation models do not adequately consider the indirect relationships among entities, affecting the precision of the representation. Based on the long short-term memory neural network and existing translation models, we propose a multiple-module hybrid neural network model called TransP. By modeling the entity paths and their relationship paths, TransP can effectively excavate the indirect relationships among the entities, and thus, improve the quality of knowledge graph completion tasks. Experimental results show that TransP outperforms state-of-the-art models in the entity prediction task, and achieves the comparable performance with previous models in the relationship prediction task.

  • Investigative Report Writing Support System for Effective Knowledge Construction from the Web

    Hiroyuki MITSUHARA  Masami SHISHIBORI  Akihiro KASHIHARA  

     
    PAPER-Creativity Support Systems and Decision Support Systems

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    874-883

    Investigative reports plagiarized from the web should be eliminated because such reports result in ineffective knowledge construction. In this study, we developed an investigative report writing support system for effective knowledge construction from the web. The proposed system attempts to prevent plagiarism by restricting copying and pasting information from web pages. With this system, students can verify information through web browsing, externalize their constructed knowledge as notes for report materials, write reports using these notes, and remove inadequacies in the report by reflection. A comparative experiment showed that the proposed system can potentially prevent web page plagiarism and make knowledge construction from the web more effective compared to a conventional report writing environment.

  • An Ontology-Based Approach to Supporting Knowledge Management in Government Agencies: A Case Study of the Thai Excise Department

    Marut BURANARACH  Chutiporn ANUTARIYA  Nopachat KALAYANAPAN  Taneth RUANGRAJITPAKORN  Vilas WUWONGSE  Thepchai SUPNITHI  

     
    PAPER-Knowledge Representation

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    884-891

    Knowledge management is important for government agencies in improving service delivery to their customers and data inter-operation within and across organizations. Building organizational knowledge repository for government agency has unique challenges. In this paper, we propose that enterprise ontology can provide support for government agencies in capturing organizational taxonomy, best practices and global data schema. A case study of a large-scale adoption for the Thailand's Excise Department is elaborated. A modular design approach of the enterprise ontology for the excise tax domain is discussed. Two forms of organizational knowledge: global schema and standard practices were captured in form of ontology and rule-based knowledge. The organizational knowledge was deployed to support two KM systems: excise recommender service and linked open data. Finally, we discuss some lessons learned in adopting the framework in the government agency.

  • A Survey of Thai Knowledge Extraction for the Semantic Web Research and Tools Open Access

    Ponrudee NETISOPAKUL  Gerhard WOHLGENANNT  

     
    SURVEY PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    986-1002

    As the manual creation of domain models and also of linked data is very costly, the extraction of knowledge from structured and unstructured data has been one of the central research areas in the Semantic Web field in the last two decades. Here, we look specifically at the extraction of formalized knowledge from natural language text, which is the most abundant source of human knowledge available. There are many tools on hand for information and knowledge extraction for English natural language, for written Thai language the situation is different. The goal of this work is to assess the state-of-the-art of research on formal knowledge extraction specifically from Thai language text, and then give suggestions and practical research ideas on how to improve the state-of-the-art. To address the goal, first we distinguish nine knowledge extraction for the Semantic Web tasks defined in literature on knowledge extraction from English text, for example taxonomy extraction, relation extraction, or named entity recognition. For each of the nine tasks, we analyze the publications and tools available for Thai text in the form of a comprehensive literature survey. Additionally to our assessment, we measure the self-assessment by the Thai research community with the help of a questionnaire-based survey on each of the tasks. Furthermore, the structure and size of the Thai community is analyzed using complex literature database queries. Combining all the collected information we finally identify research gaps in knowledge extraction from Thai language. An extensive list of practical research ideas is presented, focusing on concrete suggestions for every knowledge extraction task - which can be implemented and evaluated with reasonable effort. Besides the task-specific hints for improvements of the state-of-the-art, we also include general recommendations on how to raise the efficiency of the respective research community.

  • Collaborative Ontology Development Approach for Multidisciplinary Knowledge: A Scenario-Based Knowledge Construction System in Life Cycle Assessment

    Akkharawoot TAKHOM  Sasiporn USANAVASIN  Thepchai SUPNITHI  Mitsuru IKEDA  

     
    PAPER-Knowledge Representation

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    892-900

    Creating an ontology from multidisciplinary knowledge is a challenge because it needs a number of various domain experts to collaborate in knowledge construction and verify the semantic meanings of the cross-domain concepts. Confusions and misinterpretations of concepts during knowledge creation are usually caused by having different perspectives and different business goals from different domain experts. In this paper, we propose a community-driven ontology-based application management (CD-OAM) framework that provides a collaborative environment with supporting features to enable collaborative knowledge creation. It can also reduce confusions and misinterpretations among domain stakeholders during knowledge construction process. We selected one of the multidisciplinary domains, which is Life Cycle Assessment (LCA) for our scenario-based knowledge construction. Constructing the LCA knowledge requires many concepts from various fields including environment protection, economic development, social development, etc. The output of this collaborative knowledge construction is called MLCA (multidisciplinary LCA) ontology. Based on our scenario-based experiment, it shows that CD-OAM framework can support the collaborative activities for MLCA knowledge construction and also reduce confusions and misinterpretations of cross-domain concepts that usually presents in general approach.

101-120hit(512hit)