The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] edge(512hit)

121-140hit(512hit)

  • Mobile Edge Computing Empowers Internet of Things Open Access

    Nirwan ANSARI  Xiang SUN  

     
    INVITED PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    604-619

    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods is validated via extensive simulations.

  • Reduction of Constraints from Multipartition to Bipartition in Augmenting Edge-Connectivity of a Graph by One

    Satoshi TAOKA  Tadachika OKI  Toshiya MASHIMA  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    357-366

    The k-edge-connectivity augmentation problem with multipartition constraints (kECAMP, for short) is defined by “Given a multigraph G=(V,E) and a multipartition π={V1,...,Vr} (r≥2) of V, that is, $V = igcup_{h = 1}^r V_h$ and Vi∩Vj=∅ (1≤i

  • The Complexity of (List) Edge-Coloring Reconfiguration Problem

    Hiroki OSAWA  Akira SUZUKI  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E101-A No:1
      Page(s):
    232-238

    Let G be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of k colors. Suppose that we are given two list edge-colorings f0 and fr of G, and asked whether there exists a sequence of list edge-colorings of G between f0 and fr such that each list edge-coloring can be obtained from the previous one by changing a color assignment of exactly one edge. This problem is known to be PSPACE-complete for every integer k ≥ 6 and planar graphs of maximum degree three, but any computational hardness was unknown for the non-list variant in which every edge has the same list of k colors. In this paper, we first improve the known result by proving that, for every integer k ≥ 4, the problem remains PSPACE-complete even for planar graphs of bounded bandwidth and maximum degree three. Since the problem is known to be solvable in polynomial time if k ≤ 3, our result gives a sharp analysis of the complexity status with respect to the number k of colors. We then give the first computational hardness result for the non-list variant: for every integer k ≥ 5, the non-list variant is PSPACE-complete even for planar graphs of bandwidth quadratic in k and maximum degree k.

  • An Automatic Knowledge Graph Creation Framework from Natural Language Text

    Natthawut KERTKEIDKACHORN  Ryutaro ICHISE  

     
    PAPER

      Pubricized:
    2017/09/15
      Vol:
    E101-D No:1
      Page(s):
    90-98

    Knowledge graphs (KG) play a crucial role in many modern applications. However, constructing a KG from natural language text is challenging due to the complex structure of the text. Recently, many approaches have been proposed to transform natural language text to triples to obtain KGs. Such approaches have not yet provided efficient results for mapping extracted elements of triples, especially the predicate, to their equivalent elements in a KG. Predicate mapping is essential because it can reduce the heterogeneity of the data and increase the searchability over a KG. In this article, we propose T2KG, an automatic KG creation framework for natural language text, to more effectively map natural language text to predicates. In our framework, a hybrid combination of a rule-based approach and a similarity-based approach is presented for mapping a predicate to its corresponding predicate in a KG. Based on experimental results, the hybrid approach can identify more similar predicate pairs than a baseline method in the predicate mapping task. An experiment on KG creation is also conducted to investigate the performance of the T2KG. The experimental results show that the T2KG also outperforms the baseline in KG creation. Although KG creation is conducted in open domains, in which prior knowledge is not provided, the T2KG still achieves an F1 score of approximately 50% when generating triples in the KG creation task. In addition, an empirical study on knowledge population using various text sources is conducted, and the results indicate the T2KG could be used to obtain knowledge that is not currently available from DBpedia.

  • An Ontological Model for Fire Emergency Situations

    Kattiuscia BITENCOURT  Frederico ARAÚJO DURÃO  Manoel MENDONÇA  Lassion LAIQUE BOMFIM DE SOUZA SANTANA  

     
    PAPER

      Pubricized:
    2017/09/15
      Vol:
    E101-D No:1
      Page(s):
    108-115

    The emergency response process is quite complex since there is a wide variety of elements to be evaluated for taking decisions. Uncertainties generated by subjectivity and imprecision affect the safety and effectiveness of actions. The aim of this paper is to develop an onto-logy for emergency response protocols, in particular, to fires in buildings. This developed ontology supports the knowledge sharing, evaluation and review of the protocols used, contributing to the tactical and strategic planning of organizations. The construction of the ontology was based on the methodology Methontology. The domain specification and conceptualization were based in qualitative research, in which were evaluated 131 terms with definitions, of which 85 were approved by specialists. From there, in the Protégé tool, the domain's taxonomy and the axioms were created. The specialists validated the ontology using the assessment by human approach (taxonomy, application and structure). Thus, a sustainable ontology model to the rescue tactical phase was ensured.

  • Triple Prediction from Texts by Using Distributed Representations of Words

    Takuma EBISU  Ryutaro ICHISE  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/09/12
      Vol:
    E100-D No:12
      Page(s):
    3001-3009

    Knowledge graphs have been shown to be useful to many tasks in artificial intelligence. Triples of knowledge graphs are traditionally structured by human editors or extracted from semi-structured information; however, editing is expensive, and semi-structured information is not common. On the other hand, most such information is stored as text. Hence, it is necessary to develop a method that can extract knowledge from texts and then construct or populate a knowledge graph; this has been attempted in various ways. Currently, there are two approaches to constructing a knowledge graph. One is open information extraction (Open IE), and the other is knowledge graph embedding; however, neither is without problems. Stanford Open IE, the current best such system, requires labeled sentences as training data, and knowledge graph embedding systems require numerous triples. Recently, distributed representations of words have become a hot topic in the field of natural language processing, since this approach does not require labeled data for training. These require only plain text, but Mikolov showed that it can perform well with the word analogy task, answering questions such as, “a is to b as c is to __?.” This can be considered as a knowledge extraction task from a text for finding the missing entity of a triple. However, the accuracy is not sufficiently high when applied in a straightforward manner to relations in knowledge graphs, since the method uses only one triple as a positive example. In this paper, we analyze why distributed representations perform such tasks well; we also propose a new method for extracting knowledge from texts that requires much less annotated data. Experiments show that the proposed method achieves considerable improvement compared with the baseline; in particular, the improvement in HITS@10 was more than doubled for some relations.

  • A Study of Qualitative Knowledge-Based Exploration for Continuous Deep Reinforcement Learning

    Chenxi LI  Lei CAO  Xiaoming LIU  Xiliang CHEN  Zhixiong XU  Yongliang ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/07/26
      Vol:
    E100-D No:11
      Page(s):
    2721-2724

    As an important method to solve sequential decision-making problems, reinforcement learning learns the policy of tasks through the interaction with environment. But it has difficulties scaling to large-scale problems. One of the reasons is the exploration and exploitation dilemma which may lead to inefficient learning. We present an approach that addresses this shortcoming by introducing qualitative knowledge into reinforcement learning using cloud control systems to represent ‘if-then’ rules. We use it as the heuristics exploration strategy to guide the action selection in deep reinforcement learning. Empirical evaluation results show that our approach can make significant improvement in the learning process.

  • Multi-Environment Analysis System for Evaluating the Impact of Malicious Web Sites Changing Their Behavior

    Yoshiaki SHIRAISHI  Masaki KAMIZONO  Masanori HIROTOMO  Masami MOHRI  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2449-2457

    In the case of drive-by download attacks, most malicious web sites identify the software environment of the clients and change their behavior. Then we cannot always obtain sufficient information appropriate to the client organization by automatic dynamic analysis in open services. It is required to prepare for expected incidents caused by re-accessing same malicious web sites from the other client in the organization. To authors' knowledge, there is no study of utilizing analysis results of malicious web sites for digital forensic on the incident and hedging the risk of expected incident in the organization. In this paper, we propose a system for evaluating the impact of accessing malicious web sites by using the results of multi-environment analysis. Furthermore, we report the results of evaluating malicious web sites by the multi-environment analysis system, and show how to utilize analysis results for forensic analysis and risk hedge based on actual cases of analyzing malicious web sites.

  • A Polynomial Time Pattern Matching Algorithm on Graph Patterns of Bounded Treewidth

    Takayoshi SHOUDAI  Takashi YAMADA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1764-1772

    This paper deals with a problem to decide whether a given graph structure appears as a pattern in the structure of a given graph. A graph pattern is a triple p=(V,E,H), where (V,E) is a graph and H is a set of variables, which are ordered lists of vertices in V. A variable can be replaced with an arbitrary connected graph by a kind of hyperedge replacements. A substitution is a collection of such replacements. The graph pattern matching problem (GPMP) is the computational problem to decide whether or not a given graph G is obtained from a given graph pattern p by a substitution. In this paper, we show that GPMP for a graph pattern p and a graph G is solvable in polynomial time if the length of every variable in p is 2, p is of bounded treewidth, and G is connected.

  • Group Signature with Deniability: How to Disavow a Signature

    Ai ISHIDA  Keita EMURA  Goichiro HANAOKA  Yusuke SAKAI  Keisuke TANAKA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1825-1837

    Group signatures are a class of digital signatures with enhanced privacy. By using this type of signature, a user can sign a message on behalf of a specific group without revealing his identity, but in the case of a dispute, an authority can expose the identity of the signer. However, it is not always the case that we need to know the specific identity of a signature. In this paper, we propose the notion of deniable group signatures, where the authority can issue a proof showing that the specified user is NOT the signer of a signature, without revealing the actual signer. We point out that existing efficient non-interactive zero-knowledge proof systems cannot be straightforwardly applied to prove such a statement. We circumvent this problem by giving a fairly practical construction through extending the Groth group signature scheme (ASIACRYPT 2007). In particular, a denial proof in our scheme consists of 96 group elements, which is about twice the size of a signature in the Groth scheme. The proposed scheme is provably secure under the same assumptions as those of the Groth scheme.

  • DIBR-Synthesized Image Quality Assessment via Statistics of Edge Intensity and Orientation

    Yu ZHOU  Leida LI  Ke GU  Zhaolin LU  Beijing CHEN  Lu TANG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E100-D No:8
      Page(s):
    1929-1933

    Depth-image-based-rendering (DIBR) is a popular technique for view synthesis. The rendering process mainly introduces artifacts around edges, which leads to degraded quality. This letter proposes a DIBR-synthesized image quality metric by measuring the Statistics of both Edge Intensity and Orientation (SEIO). The Canny operator is first used to detect edges. Then the gradient maps are calculated, based on which the intensity and orientation of the edge pixels are computed for both the reference and synthesized images. The distance between the two intensity histograms and that between the two orientation histograms are computed. Finally, the two distances are pooled to obtain the overall quality score. Experimental results demonstrate the advantages of the presented method.

  • Stochastic Fault-Tolerant Routing in Dual-Cubes

    Junsuk PARK  Nobuhiro SEKI  Keiichi KANEKO  

     
    LETTER-Dependable Computing

      Pubricized:
    2017/05/10
      Vol:
    E100-D No:8
      Page(s):
    1920-1921

    In the topologies for interconnected nodes, it is desirable to have a low degree and a small diameter. For the same number of nodes, a dual-cube topology has almost half the degree compared to a hypercube while increasing the diameter by just one. Hence, it is a promising topology for interconnection networks of massively parallel systems. We propose here a stochastic fault-tolerant routing algorithm to find a non-faulty path from a source node to a destination node in a dual-cube.

  • Development of Wireless Access and Flexible Networking Technologies for 5G Cellular Systems Open Access

    Seiichi SAMPEI  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1174-1180

    This paper discusses key technologies specific for fifth generation (5G) cellular systems which are expected to connect internet of things (IoT) based vertical sectors. Because services for 5G will be expanded drastically, from information transfer services to mission critical and massive connection IoT connection services for vertical sectors, and requirement for cellular systems becomes quite different compared to that of fourth generation (4G) systems, after explanation for the service and technical trends for 5G, key wireless access technologies will be discussed, especially, from the view point of what is new and how import. In addition to the introduction of new technologies for wireless access, flexibility of networking is also discussed because it can cope with QoS support services, especially to cope with end-to-end latency constraint conditions. Therefore, this paper also discuss flexible network configuration using mobile edge computing (MEC) based on software defined network (SDN) and network slicing.

  • Zero-Shot Embedding for Unseen Entities in Knowledge Graph

    Yu ZHAO  Sheng GAO  Patrick GALLINARI  Jun GUO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/10
      Vol:
    E100-D No:7
      Page(s):
    1440-1447

    Knowledge graph (KG) embedding aims at learning the latent semantic representations for entities and relations. However, most existing approaches can only be applied to KG completion, so cannot identify relations including unseen entities (or Out-of-KG entities). In this paper, motivated by the zero-shot learning, we propose a novel model, namely JointE, jointly learning KG and entity descriptions embedding, to extend KG by adding new relations with Out-of-KG entities. The JointE model is evaluated on entity prediction for zero-shot embedding. Empirical comparisons on benchmark datasets show that the proposed JointE model outperforms state-of-the-art approaches. The source code of JointE is available at https://github.com/yzur/JointE.

  • Finding the Minimum Number of Open-Edge Guards in an Orthogonal Polygon is NP-Hard

    Chuzo IWAMOTO  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1521-1525

    We study the problem of determining the minimum number of open-edge guards which guard the interior of a given orthogonal polygon with holes. Here, an open-edge guard is a guard which is allowed to be placed along open edges of a polygon, that is, the endpoints of the edge are not taken into account for visibility purpose. It is shown that finding the minimum number of open-edge guards for a given orthogonal polygon with holes is NP-hard.

  • Ontology-Based Driving Decision Making: A Feasibility Study at Uncontrolled Intersections

    Lihua ZHAO  Ryutaro ICHISE  Zheng LIU  Seiichi MITA  Yutaka SASAKI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1425-1439

    This paper presents an ontology-based driving decision making system, which can promptly make safety decisions in real-world driving. Analyzing sensor data for improving autonomous driving safety has become one of the most promising issues in the autonomous vehicles research field. However, representing the sensor data in a machine understandable format for further knowledge processing still remains a challenging problem. In this paper, we introduce ontologies designed for autonomous vehicles and ontology-based knowledge base, which are used for representing knowledge of maps, driving paths, and perceived driving environments. Advanced Driver Assistance Systems (ADAS) are developed to improve safety of autonomous vehicles by accessing to the ontology-based knowledge base. The ontologies can be reused and extended for constructing knowledge base for autonomous vehicles as well as for implementing different types of ADAS such as decision making system.

  • Epitaxial Junction Termination Extension (Epi-JTE) for SiC Power Devices

    Doohyung CHO  Kunsik PARK  Jongil WON  Sanggi KIM  Kwansgsoo KIM  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    439-445

    In this paper, Epitaxial (Epi) Junction Termination Extension (JTE) technique for silicon carbide (SiC) power device is presented. Unlike conventional JTE, the Epi-JTE doesn't require high temperature (about 500°C) implantation process. Thus, it doesn't require high temperature (about 1700°C) process for implanted dose activation and surface defect curing. Therefore, the manufacturing cost will be decreased. Also, the fabrication process is very simple because the dose of the JTE is controlled by epitaxy growth. The blocking characteristic is analyzed through 2D-simulation for the proposed Epi-JTE. In addition, the effect was validated by experiment of fabricated SiC device with the Single-Zone-Epi-JTE. As a result, it has blocking capability of 79.4% compared to ideal parallel-plane junction breakdown.

  • Simulation Study of Low Latency Network Architecture Using Mobile Edge Computing

    Krittin INTHARAWIJITR  Katsuyoshi IIDA  Hiroyuki KOGA  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    963-972

    Attaining extremely low latency service in 5G cellular networks is an important challenge in the communication research field. A higher QoS in the next-generation network could enable several unprecedented services, such as Tactile Internet, Augmented Reality, and Virtual Reality. However, these services will all need support from powerful computational resources provided through cloud computing. Unfortunately, the geolocation of cloud data centers could be insufficient to satisfy the latency aimed for in 5G networks. The physical distance between servers and users will sometimes be too great to enable quick reaction within the service time boundary. The problem of long latency resulting from long communication distances can be solved by Mobile Edge Computing (MEC), though, which places many servers along the edges of networks. MEC can provide shorter communication latency, but total latency consists of both the transmission and the processing times. Always selecting the closest edge server will lead to a longer computing latency in many cases, especially when there is a mass of users around particular edge servers. Therefore, the research studies the effects of both latencies. The communication latency is represented by hop count, and the computation latency is modeled by processor sharing (PS). An optimization model and selection policies are also proposed. Quantitative evaluations using simulations show that selecting a server according to the lowest total latency leads to the best performance, and permitting an over-latency barrier would further improve results.

  • SpEnD: Linked Data SPARQL Endpoints Discovery Using Search Engines

    Semih YUMUSAK  Erdogan DOGDU  Halife KODAZ  Andreas KAMILARIS  Pierre-Yves VANDENBUSSCHE  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    758-767

    Linked data endpoints are online query gateways to semantically annotated linked data sources. In order to query these data sources, SPARQL query language is used as a standard. Although a linked data endpoint (i.e. SPARQL endpoint) is a basic Web service, it provides a platform for federated online querying and data linking methods. For linked data consumers, SPARQL endpoint availability and discovery are crucial for live querying and semantic information retrieval. Current studies show that availability of linked datasets is very low, while the locations of linked data endpoints change frequently. There are linked data respsitories that collect and list the available linked data endpoints or resources. It is observed that around half of the endpoints listed in existing repositories are not accessible (temporarily or permanently offline). These endpoint URLs are shared through repository websites, such as Datahub.io, however, they are weakly maintained and revised only by their publishers. In this study, a novel metacrawling method is proposed for discovering and monitoring linked data sources on the Web. We implemented the method in a prototype system, named SPARQL Endpoints Discovery (SpEnD). SpEnD starts with a “search keyword” discovery process for finding relevant keywords for the linked data domain and specifically SPARQL endpoints. Then, the collected search keywords are utilized to find linked data sources via popular search engines (Google, Bing, Yahoo, Yandex). By using this method, most of the currently listed SPARQL endpoints in existing endpoint repositories, as well as a significant number of new SPARQL endpoints, have been discovered. We analyze our findings in comparison to Datahub collection in detail.

  • An Exact Algorithm for Lowest Edge Dominating Set

    Ken IWAIDE  Hiroshi NAGAMOCHI  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    414-421

    Given an undirected graph G, an edge dominating set is a subset F of edges such that each edge not in F is adjacent to some edge in F, and computing the minimum size of an edge dominating set is known to be NP-hard. Since the size of any edge dominating set is at least half of the maximum size µ(G) of a matching in G, we study the problem of testing whether a given graph G has an edge dominating set of size ⌈µ(G)/2⌉ or not. In this paper, we prove that the problem is NP-complete, whereas we design an O*(2.0801µ(G)/2)-time and polynomial-space algorithm to the problem.

121-140hit(512hit)