The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ferroelectric(50hit)

41-50hit(50hit)

  • Di/Ferroelectric Properties of Bismuth Based Layered Ferroelectric Films for Application to Non-volatile Memories

    Hitoshi TABATA  Takeshi YANAGITA  Tomoji KAWAI  

     
    PAPER

      Vol:
    E81-C No:4
      Page(s):
    566-571

    We have constructed Bi based layer structured ferroelectric films and their superlattices by a pulsed laser deposition technique. The dielectric constants along c-axis increase with increasing of the number of pseudo-perovskite layers between double Bi2O2 layers. Ferroelectricity appears along the c-axis direction only for the odd number of the perovskite layers owing to the mirror symmetry in a crystal structure. Especially, the Bi2VO5. 5 film shows an atomically flat surface, low dielectric constant of 30 and ferroelectricity of Pr=3 µC/cm2 and Ec=16 kV/cm, respectively. This material is expected to the application for FRAMs.

  • Structural Defects in Sr0. 7Bi2. 3Ta2O9 Thin Film for Ferroelectric Memory

    Tetsuya OSAKA  Sachiko ONO  Akira SAKAKIBARA  Ichiro KOIWA  

     
    PAPER

      Vol:
    E81-C No:4
      Page(s):
    545-551

    Using transmission electron microscopy (TEM), we studied structural defects in a Sr0. 7Bi2. 3Ta2O9 (SBT) thin film to be used for ferroelectric memory devices. We examined the effects of the substrate, crystal continuity, and dislocations in crystals as major causes of defects. For this study, we used an SBT thin film grown from an alkoxide solution. Since crystal growth was hardly influenced by the substrate, the substrate had little influence on the occurrence of defects resulted in misfit of lattice constant. Regions of partially low crystal continuity were observed in the SBT thin film. In these regions, the orientation was still uniform, but the continuity of the crystal grain was low because of the defects. In addition, variation in contrast was observed in the crystals, however, no obvious variation in chemical composition was found in this region of varying contrast. Therefore, the contrast variation is considered to be attributed to the dislocation. Such a dislocation was found to be occurred in the direction of the (2010) plane in many instances. The defects in the SBT film were also confirmed by the TEM observation.

  • Ferroelectric Field-Control in Pb(Zr0.52Ti0.48)O3/(Y0.6Pr0.4)Ba2Cu3Oy Heterostructures and Their Memory

    Shigeki HONTSU  Masaya NAKAMORI  Hitoshi TABATA  Junya ISHII  Tomoji KAWAI  

     
    PAPER

      Vol:
    E80-C No:10
      Page(s):
    1304-1309

    Ferroelectric / superconducting heterostructures of Pb(Zr0.52Ti0.48)O3 [PZT] / (Y0.6Pr0.4)Ba2Cu3Oy [YPBCO] have been formed on SrTiO3(100) substrate using an ArF pulsed laser deposition. The crystallinity and surface morphology of heterostructures were investigated by X-ray diffraction measurements and atomic force microscopy. We also measured dielectric and ferroelectric properties of PZT film in the Au/PZT/YPBCO structure. Furthermore, we fabricated a three-terminal devices having the structure described above using an in-situ metal mask exchange system, and investigated the ferroelectric field effect. As a result, we observed a modulation of channel resistance approximately equal to that estimated from the induced carrier and memory effect due to remanent polarization of PZT.

  • Novel Electronic Properties on Ferroelectric/ferromagnetic Heterostructures

    Hitoshi TABATA  Tomoji KAWAI  

     
    PAPER-Novel Concept Devices

      Vol:
    E80-C No:7
      Page(s):
    918-923

    We have constructed a new concept device with combination of ferroelectric and ferromagnetic materials by a laser ablation technique. An ideal hetero-epitaxy can be obtained owing to the similar crystal structure of perovskite type ferroelectric Pb (Zr, Ti) O3; (so called PZT) and ferromagnetic (La, Sr) MnO3. The ferromagnetic (La, Sr) MnO3 compounds are well known for their colossal magnetoresistance (CMR) properties. The CMR effect is strongly affected by the lattice stress. The PZT, on the other hand, is famous for its large piezoelectrics. We can introduce the lattice stress easily by applying voltage for the piezoelectric compounds. In the heterostructured ferromagnetic/ferroelectric devices, there are remarkable interesting phenomena. Electric properties of the ferromagnetic material can be controlled by piezoelectric effect via distortion of crystal structure.

  • Bistable Switching in PDLC Film with a Ferroelectric Alignment Layer

    Masako INOMATA  Masahiro NAKAGAWA  

     
    PAPER

      Vol:
    E79-C No:8
      Page(s):
    1047-1057

    In this work is first presented that a PDLC film with a ferroelectric alignment layer realizes a bistable switching in similar to the surface-stabilised ferroelectric liquid crystal display devices. Such a bistability is found to critically depend on the squareness parameter of the ferroelectric layer as well as such material properties of the dispersed nematics as the elastic and the dielectric constants. It is also found that there exists an appropriate elastic constant to improve the optical transmittance. The dependence of the distribution of the radii of the nematic droplets on the electro-optic bistability is also investigated in detail by means of the numerical computations assuming a fractal distribution. The fundamental electro-optic properties of the presently, proposed PDLC cells imply the advantage beyond the conventional PDLC without any ferroelectric alignment layer.

  • Ferroelectric Nonvolatile Memory Technology

    Tatsumi SUMI  

     
    INVITED PAPER-Nonvolatile memories

      Vol:
    E79-C No:6
      Page(s):
    812-818

    Ferroelectic nonvolatile technology comprises the ferroelectric material technology, the process technology and the circuit technology. Bi based layered Perovskyte ferroelectric material, SrBi2Ta2O9, so called "Y 1," has superior characteristics in terms of endurance and nonvolatile properties, which is confirmed by a 256kbit ferroelectric nonvolatile memory. Critical issues regarding the ferroelectric process are reviewed. The lT/lC cell configuration which is essential for a high density memory and the reference voltage generator employed in the 256 k memory are described as is the architecture to reduce the power consumption of the memory.

  • Half-Vcc Plate Nonvolatile DRAMs with Ferroelectric Capacitors

    Kan TAKEUCHI  Katsumi MATSUNO  Yoshinobu NAKAGOME  Masakazu AOKI  

     
    PAPER-Integrated Electronics

      Vol:
    E79-C No:2
      Page(s):
    234-242

    An architecture for a high-density nonvolatile memory with ferroelectric capacitors is proposed and simulated. The architecture includes: (1) the operation procedure for DRAM-like memory cells with a Vcc/2 common plate, (2) commands and pin arrangement compatible with those of DRAMs. The resulting ferroelectric memory is expected to show, in addition to nonvolatility, high performance in terms of speed, active power dissipation, and read endurance. In addition, the memory can be handled in the same way as DRAMs. The proposed basic operations are confirmed by using circuit simulations, in which an equivalent circuit model for ferroelectirc capacitors is incorporated. A problem remaining with the architecture is low write endurance due to fatigue along with polarization switching. Designing the reference-voltage generator for 1T1C (one-transistor and one-capacitor) cells, while considering signal reduction along with fatigue, will be another issue for achieving high-density comparable to that of DRAMs.

  • (Ba0.75Sr0.25)TiO3 Films for 256 Mbit DRAM

    Tsuyoshi HORIKAWA  Noboru MIKAMI  Hiromi ITO  Yoshikazu OHNO  Tetsuro MAKITA  Kazunao SATO  

     
    PAPER-Device Technology

      Vol:
    E77-C No:3
      Page(s):
    385-391

    Thin (Ba0.75Sr0.25)TiO3 (BST) films to be used as dielectric materials in 256 Mbit DRAM capacitors were investigated. These films were deposited by an rf-sputtering method at substrate temperatures of 480 to 750. As substrate temperature increases, the dielectric constant to the films also increases, from 230 to 550. BST films prepared at temperatures higher than 700 show larger current leaks than films prepared at lower temperatures. A dielectric constant of 250, corresponding to a silicon oxide equivalent thickness (teq) of 0.47 nm, and a leak current density about 110-8 A/cm2 were obtained in 30-nm-thick film deposited at 660. Both of these values are sufficient for use in a 256 Mbit DRAM capacitor.

  • Chaotic Behavior in Ferroelectrics

    Ikuo SUZUKI  Minoru MURAKAMI  Masaki MAEDA  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1743-1746

    Chaotic behavior in a series resonance circuit with a ferroelectric triglycine sulfate (TGS) crystal was observed just below the ferroelectric phase transition temperature. We have analyzed the nonlinear responses by applying external electric fields to the crystal. The computer simulation was made for the modified forroelectric hysteresis loops to realize the experimental results. The fractal correlation dimension was determined to be ν=1.8 in the chaotic phase.

  • Thresholding Characteristics of an Optically Addressable GaAs-pin/Ferroelectric Liquid Crystal Spatial Light Modulator and Its Applications

    Masashi HASHIMOTO  Yukio FUKUDA  Shigeki ISHIBASHI  Ken-ichi KITAYAMA  

     
    LETTER-Opto-Electronics

      Vol:
    E75-C No:11
      Page(s):
    1395-1398

    The newly developed GaAs-pin/SLM, that is structured with a GaAs-pin diode photodetector and a ferroelectric liquid crystal as the light phase modulator, shows the accumulative thresholding characteristic against the optical energy of the write-in pulse train. We experimentally investigate this characteristic and discuss its applications to optical parallel processings.

41-50hit(50hit)