The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

421-440hit(3161hit)

  • Winding Ratio Design of Transformer in Equivalent Circuit of Circular Patch Array Absorber

    Ryosuke SUGA  Tomohiko NAKAMURA  Daisuke KITAHARA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    651-654

    An equivalent circuit of a circular patch array absorber has been proposed, however the method to identify a winding ratio of a transformer in its circuit have never been reported. In this paper, it is indicated that the ratio is proportionate to the area ratio between patch and unit cell of the absorber, and the design method of the winding ratio is proposed. The winding ratio derived by the proposed method is agreed well with that by using electromagnetic simulator within 3% error. Moreover, the operating frequency and 15 dB bandwidth of the fabricated absorber designed by proposed method are agreed with those derived by the circuit simulation within 0.4% and 0.1% errors. Thus the validity of the proposed method is verified.

  • Adaptive Beamforming Based on Compressed Sensing with Gain/Phase Uncertainties

    Bin HU  Xiaochuan WU  Xin ZHANG  Qiang YANG  Di YAO  Weibo DENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:8
      Page(s):
    1257-1262

    A new method for adaptive digital beamforming technique with compressed sensing (CS) for sparse receiving arrays with gain/phase uncertainties is presented. Because of the sparsity of the arriving signals, CS theory can be adopted to sample and recover receiving signals with less data. But due to the existence of the gain/phase uncertainties, the sparse representation of the signal is not optimal. In order to eliminating the influence of the gain/phase uncertainties to the sparse representation, most present study focus on calibrating the gain/phase uncertainties first. To overcome the effect of the gain/phase uncertainties, a new dictionary optimization method based on the total least squares (TLS) algorithm is proposed in this paper. We transfer the array signal receiving model with the gain/phase uncertainties into an EIV model, treating the gain/phase uncertainties effect as an additive error matrix. The method we proposed in this paper reconstructs the data by estimating the sparse coefficients using CS signal reconstruction algorithm and using TLS method toupdate error matrix with gain/phase uncertainties. Simulation results show that the sparse regularized total least squares algorithm can recover the receiving signals better with the effect of gain/phase uncertainties. Then adaptive digital beamforming algorithms are adopted to form antenna beam using the recovered data.

  • Performance Analysis of IEEE 802.11 DCF Based on a Macroscopic State Description

    Xiang LI  Yuki NARITA  Yuta GOTOH  Shigeo SHIODA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:8
      Page(s):
    1923-1932

    We propose an analytical model for IEEE 802.11 wireless local area networks (WLANs). The analytical model uses macroscopic descriptions of the distributed coordination function (DCF): the backoff process is described by a few macroscopic states (medium-idle, transmission, and medium-busy), which obviates the need to track the specific backoff counter/backoff stages. We further assume that the transitions between the macroscopic states can be characterized as a continuous-time Markov chain under the assumption that state persistent times are exponentially distributed. This macroscopic description of DCF allows us to utilize a two-dimensional continuous-time Markov chain for simplifying DCF performance analysis and queueing processes. By comparison with simulation results, we show that the proposed model accurately estimates the throughput performance and average queue length under light, heavy, or asymmetric traffic.

  • ECG Delineation with Randomly Selected Wavelet Feature and Random Forest Classifier

    Dapeng FU  Zhourui XIA  Pengfei GAO  Haiqing WANG  Jianping LIN  Li SUN  

     
    PAPER-Pattern Recognition

      Pubricized:
    2018/05/09
      Vol:
    E101-D No:8
      Page(s):
    2082-2091

    Objective: Detection of Electrocardiogram (ECG) characteristic points can provide critical diagnostic information about heart diseases. We proposed a novel feature extraction and machine learning scheme for automatic detection of ECG characteristic points. Methods: A new feature, termed as randomly selected wavelet transform (RSWT) feature, was devised to represent ECG characteristic points. A random forest classifier was adapted to infer the characteristic points position with high sensitivity and precision. Results: Compared with other state-of-the-art algorithms' testing results on QT database, our detection results of RSWT scheme showed comparable performance (similar sensitivity, precision, and detection error for each characteristic point). RSWT testing on MIT-BIH database also demonstrated promising cross-database performance. Conclusion: A novel RSWT feature and a new detection scheme was fabricated for ECG characteristic points. The RSWT demonstrated a robust and trustworthy feature for representing ECG morphologies. Significance: With the effectiveness of the proposed RSWT feature we presented a novel machine learning based scheme to automatically detect all types of ECG characteristic points at a time. Furthermore, it showed that our algorithm achieved better performance than other reported machine learning based methods.

  • Randomness Test to Solve Discrete Fourier Transform Test Problems

    Atsushi IWASAKI  Ken UMENO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:8
      Page(s):
    1204-1214

    The Discrete Fourier Transform Test (DFTT) is a randomness test in NIST SP800-22. However, to date, the theoretical reference distribution of the DFTT statistic has not been derived, which is problematic. We propose a new test using power spectrum variance as the test statistic whose reference distribution can be derived theoretically. Note that the purpose of both the DFTT and the proposed test is to detect periodic features. Experimental results demonstrate that the proposed test has stronger detection power than the DFTT and that it test can be used even for short sequences.

  • Full-Duplex Cooperative Cognitive Radio Networks with Simultaneous Transmit and Receive Antennas in MIMO Channels

    Sangwoo PARK  Iickho SONG  Seungwon LEE  Seokho YOON  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/01/31
      Vol:
    E101-B No:8
      Page(s):
    1903-1915

    We propose a cooperative cognitive radio network (CCRN) with secondary users (SUs) employing two simultaneous transmit and receive (STAR) antennas. In the proposed framework of full-duplex (FD) multiple-input-multiple-output (MIMO) CCRN, the region of achievable rate is expanded via FD communication among SUs enabled by the STAR antennas adopted for the SUs. The link capacity of the proposed framework is analyzed theoretically. It is shown through numerical analysis that the proposed FD MIMO-CCRN framework can provide a considerable performance gain over the conventional frameworks of CCRN and MIMO-CCRN.

  • Improving Range Resolution by Triangular Decomposition for Small UAV Radar Altimeters

    Di BAI  Zhenghai WANG  Mao TIAN  Xiaoli CHEN  

     
    PAPER-Sensing

      Pubricized:
    2018/02/20
      Vol:
    E101-B No:8
      Page(s):
    1933-1939

    A triangular decomposition-based multipath super-resolution method is proposed to improve the range resolution of small unmanned aerial vehicle (UAV) radar altimeters that use a single channel with continuous direct spread waveform. In the engineering applications of small UAV radar altimeter, multipath scenarios are quite common. When the conventional matched filtering process is used under these environments, it is difficult to identify multiple targets in the same range cell due to the overlap between echoes. To improve the performance, we decompose the overlapped peaks yielded by matched filtering into a series of basic triangular waveforms to identify various targets with different time-shifted correlations of the pseudo-noise (PN) sequence. Shifting the time scale enables targets in the same range resolution unit to be identified. Both theoretical analysis and experiments show that the range resolution can be improved significantly, as it outperforms traditional matched filtering processes.

  • Two High Accuracy Frequency Estimation Algorithms Based on New Autocorrelation-Like Function for Noncircular/Sinusoid Signal

    Kai WANG  Jiaying DING  Yili XIA  Xu LIU  Jinguang HAO  Wenjiang PEI  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:7
      Page(s):
    1065-1073

    Computing autocorrelation coefficient can effectively reduce the influence of additive white noise, thus estimation precision will be improved. In this paper, an autocorrelation-like function, different from the ordinary one, is defined, and is proven to own better linear predictive performance. Two algorithms for signal model are developed to achieve frequency estimates. We analyze the theoretical properties of the algorithms in the additive white Gaussian noise. The simulation results match with the theoretical values well in the sense of mean square error. The proposed algorithms compare with existing estimators, are closer to the Cramer-Rao bound (CRLB). In addition, computer simulations demonstrate that the proposed algorithms provide high accuracy and good anti-noise capability.

  • Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/12
      Vol:
    E101-B No:7
      Page(s):
    1744-1751

    The combination of large-scale antenna arrays and simultaneous wireless information and power transfer (SWIPT), which can provide enormous increase of throughput and energy efficiency is a promising key in next generation wireless system (5G). This paper investigates efficient transceiver design to minimize transmit power, subject to users' required data rates and energy harvesting, in large-scale SWIPT system where the base station utilizes a very large number of antennas for transmitting both data and energy to multiple users equipped with time-switching (TS) or power-splitting (PS) receive structures. We first propose the well-known semidefinite relaxation (SDR) and Gaussian randomization techniques to solve the minimum transmit power problems. However, for these large-scale SWIPT problems, the proposed scheme, which is based on conventional SDR method, is not suitable due to its excessive computation costs, and a consensus alternating direction method of multipliers (ADMM) cannot be directly applied to the case that TS or PS ratios are involved in the optimization problem. Therefore, in the second solution, our first step is to optimize the variables of TS or PS ratios, and to achieve simplified problems. After then, we propose fast algorithms for solving these problems, where the outer loop of sequential parametric convex approximation (SPCA) is combined with the inner loop of ADMM. Numerical simulations show the fast convergence and superiority of the proposed solutions.

  • Towards an Improvement of Bug Report Summarization Using Two-Layer Semantic Information

    Cheng-Zen YANG  Cheng-Min AO  Yu-Han CHUNG  

     
    PAPER

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1743-1750

    Bug report summarization has been explored in past research to help developers comprehend important information for bug resolution process. As text mining technology advances, many summarization approaches have been proposed to provide substantial summaries on bug reports. In this paper, we propose an enhanced summarization approach called TSM by first extending a semantic model used in AUSUM with the anthropogenic and procedural information in bug reports and then integrating the extended semantic model with the shallow textual information used in BRC. We have conducted experiments with a dataset of realistic software projects. Compared with the baseline approaches BRC and AUSUM, TSM demonstrates the enhanced performance in achieving relative improvements of 34.3% and 7.4% in the F1 measure, respectively. The experimental results show that TSM can effectively improve the performance.

  • Effect of User Antenna Selection on Block Beamforming Algorithms for Suppressing Inter-User Interference in Multiuser MIMO System Open Access

    Nobuyoshi KIKUMA  Kentaro NISHIMORI  Takefumi HIRAGURI  

     
    INVITED PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1523-1535

    Multiuser MIMO (MU-MIMO) improves the system channel capacity by generating a large virtual MIMO channel between a base station and multiple user terminals (UTs) with effective utilization of wireless resources. Block beamforming algorithms such as Block Diagonalization (BD) and Block Maximum Signal-to-Noise ratio (BMSN) have been proposed in order to realize MU-MIMO broadcast transmission. The BD algorithm cancels inter-user interference (IUI) by creating the weights so that the channel matrices for the other users are set to be zero matrices. The BMSN algorithm has a function of maintaining a high gain response for each desired user in addition to IUI cancellation. Therefore, the BMSN algorithm generally outperforms the BD algorithm. However, when the number of transmit antennas is equal to the total number of receive antennas, the transmission rate by both BD and BMSN algorithms is decreased. This is because the eigenvalues of channel matrices are too small to support data transmission. To resolve the issue, this paper focuses on an antenna selection (AS) method at the UTs. The AS method reduces the number of pattern nulls for the other users except an intended user in the BD and BMSN algorithms. It is verified via bit error rate (BER) evaluation that the AS method is effective in the BD and BMSN algorithms, especially, when the number of user antennas with a low bit rate (i.e., low signal-to-noise power ratio) is increased. Moreover, this paper evaluates the achievable bit rate and throughput including an actual channel state information feedback based on IEEE802.11ac standard. Although the number of equivalent receive antenna is reduced to only one by the AS method when the number of antennas at the UT is two, it is shown that the throughputs by BD and BMSN with the AS method (BD-AS and BMSN-AS) are higher than those by the conventional BD and BMSN algorithms.

  • Secrecy Energy Efficiency Optimization for MIMO SWIPT Systems

    Yewang QIAN  Tingting ZHANG  Haiyang ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:7
      Page(s):
    1141-1145

    In this letter, we consider a multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer (SWIPT) system, in which the confidential message intended for the information receiver (IR) should be kept secret from the energy receiver (ER). Our goal is to design the optimal transmit covariance matrix so as to maximize the secrecy energy efficiency (SEE) of the system while guaranteeing the secrecy rate, energy harvesting and transmit power constraints. To deal with the original non-convex optimization problem, we propose an alternating optimization (AO)- based algorithm and also prove its convergence. Simulation results show that the proposed algorithm outperforms conventional design methods in terms of SEE.

  • Multi-Beam Massive MIMO with Beam-Selection Using Only Amplitude Information in Uplink Channel

    Fumiya MURAMATSU  Kentaro NISHIMORI  Ryotaro TANIGUCHI  Takefumi HIRAGURI  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1544-1551

    Massive multiple-input multiple-output (MIMO) transmission, in which the number of antennas is considerably more than the number of user terminals, has attracted attention as a key technology in next-generation mobile communication systems, because it enables improvements in the service area and interference mitigation with simple signal processing. Multi-beam massive MIMO employing high-power beam selection in the analog part and a blind algorithm in the digital part, such as the constant modulus algorithm that does not need channel state information, has been proposed and shown to offer high transmission efficiency. In this paper, in order to realize higher transmission rates and communication efficiency, we propose a beam-selection method that uses multi-beam amplitude information only. Furthermore, this method can be realized through signal processing with a simple configuration and is highly suitable for hybrid analog-digital massive MIMO, which is advantageous in terms of cost and power consumption. Here, the effectiveness of the proposed method is verified by computer simulation.

  • Active Contours Driven by Local Rayleigh Distribution Fitting Energy for Ultrasound Image Segmentation

    Hui BI  Yibo JIANG  Hui LI  Xuan SHA  Yi WANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/02/08
      Vol:
    E101-D No:7
      Page(s):
    1933-1937

    The ultrasound image segmentation is a crucial task in many clinical applications. However, the ultrasound image is difficult to segment due to image inhomogeneity caused by the ultrasound imaging technique. In this paper, to deal with image inhomogeneity with considering ultrasound image properties the Local Rayleigh Distribution Fitting (LRDF) energy term is introduced into the traditional level set method newly. While the curve evolution equation is derived for energy minimization, and self-driven uterus contour is achieved on the ultrasound images. The experimental segmentation results on synthetic images and in-vivo ultrasound images present that the proposed approach is effective and accurate, with the Dice Score Coefficient (DSC) of 0.95 ± 0.02.

  • MIMO Radar Waveforms Using Orthogonal Complementary Codes with Doppler-Offset

    Takaaki KISHIGAMI  Hidekuni YOMO  Naoya YOSOKU  Akihiko MATSUOKA  Junji SATO  

     
    PAPER-Sensing

      Pubricized:
    2017/12/20
      Vol:
    E101-B No:6
      Page(s):
    1503-1512

    This paper proposes multiple-input multiple-output (MIMO) radar waveforms consisting of Doppler-offset orthogonal complementary codes (DO-OCC) for raising the Doppler resilience of MIMO radar systems. The DO-OCC waveforms have low cross-correlation among multiplexed waves and a low autocorrelation peak sidelobe level (PSL) even in the Doppler shift condition. They are verified by computer simulations and measurements. Computer simulations show that the peak sidelobe ratio (PSR) of the DO-OCC exceeds over 60dB and the desired to undesired signal power ratio (DUR) is over 60dB in the case that the Doppler shift is 0.048 rad per pulse repetition interval (PRI). And through the experimental measurements, it has been verified that the PSR of the DO-OCC is over 40dB and the DUR is over 50dB in the case that Doppler shift is 0.05 rad per PRI and that The DO-OCC waveforms enable to maintain the direction of arrival (DOA) estimation accuracy for moving targets as almost same as the one for static targets. The results prove the effectiveness of the proposed MIMO waveforms in achieving Doppler tolerance while maintaining orthogonality and autocorrelation properties.

  • More New Classes of Differentially 4-Uniform Permutations with Good Cryptographic Properties

    Jie PENG  Chik How TAN  Qichun WANG  Jianhua GAO  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    945-952

    Research on permutation polynomials over the finite field F22k with significant cryptographical properties such as possibly low differential uniformity, possibly high nonlinearity and algebraic degree has attracted a lot of attention and made considerable progress in recent years. Once used as the substitution boxes (S-boxes) in the block ciphers with Substitution Permutation Network (SPN) structure, this kind of polynomials can have a good performance against the classical cryptographic analysis such as linear attacks, differential attacks and the higher order differential attacks. In this paper we put forward a new construction of differentially 4-uniformity permutations over F22k by modifying the inverse function on some specific subsets of the finite field. Compared with the previous similar works, there are several advantages of our new construction. One is that it can provide a very large number of Carlet-Charpin-Zinoviev equivalent classes of functions (increasing exponentially). Another advantage is that all the functions are explicitly constructed, and the polynomial forms are obtained for three subclasses. The third advantage is that the chosen subsets are very large, hence all the new functions are not close to the inverse function. Therefore, our construction may provide more choices for designing of S-boxes. Moreover, it has been checked by a software programm for k=3 that except for one special function, all the other functions in our construction are Carlet-Charpin-Zinoviev equivalent to the existing ones.

  • Compact CAR: Low-Overhead Cache Replacement Policy for an ICN Router

    Atsushi OOKA  Suyong EUM  Shingo ATA  Masayuki MURATA  

     
    PAPER-Network System

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1366-1378

    Information-centric networking (ICN) has gained attention from network research communities due to its capability of efficient content dissemination. In-network caching function in ICN plays an important role to achieve the design motivation. However, many researchers on in-network caching due to its ability to efficiently disseminate content. The in-network caching function in ICN plays an important role in realizing the design goals. However, many in-network caching researchers have focused on where to cache rather than how to cache: the former is known as content deployment in the network and the latter is known as cache replacement in an ICN router. Although the cache replacement has been intensively researched in the context of web-caching and content delivery network previously, networks, the conventional approaches cannot be directly applied to ICN due to the fine granularity of chunks in ICN, which eventually changes the access patterns. In this paper, we argue that ICN requires a novel cache replacement algorithm to fulfill the requirements in the design of a high performance ICN router. Then, we propose a novel cache replacement algorithm to satisfy the requirements named Compact CLOCK with Adaptive Replacement (Compact CAR), which can reduce the consumption of cache memory to one-tenth compared to conventional approaches. In this paper, we argue that ICN requires a novel cache replacement algorithm to fulfill the requirements set for high performance ICN routers. Our solution, Compact CLOCK with Adaptive Replacement (Compact CAR), is a novel cache replacement algorithm that satisfies the requirements. The evaluation result shows that the consumption of cache memory required to achieve a desired performance can be reduced by 90% compared to conventional approaches such as FIFO and CLOCK.

  • Towards Ultra-High-Speed Cryogenic Single-Flux-Quantum Computing Open Access

    Koki ISHIDA  Masamitsu TANAKA  Takatsugu ONO  Koji INOUE  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    359-369

    CMOS microprocessors are limited in their capacity for clock speed improvement because of increasing computing power, i.e., they face a power-wall problem. Single-flux-quantum (SFQ) circuits offer a solution with their ultra-fast-speed and ultra-low-power natures. This paper introduces our contributions towards ultra-high-speed cryogenic SFQ computing. The first step is to design SFQ microprocessors. From qualitatively and quantitatively evaluating past-designed SFQ microprocessors, we have found that revisiting the architecture of SFQ microprocessors and on-chip caches is the first critical challenge. On the basis of cross-layer discussions and analysis, we came to the conclusion that a bit-parallel gate-level pipeline architecture is the best solution for SFQ designs. This paper summarizes our current research results targeting SFQ microprocessors and on-chip cache architectures.

  • Robust MIMO Radar Waveform Design to Improve the Worst-Case Detection Performance of STAP

    Hongyan WANG  Quan CHENG  Bingnan PEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/11/20
      Vol:
    E101-B No:5
      Page(s):
    1175-1182

    The issue of robust multi-input multi-output (MIMO) radar waveform design is investigated in the presence of imperfect clutter prior knowledge to improve the worst-case detection performance of space-time adaptive processing (STAP). Robust design is needed because waveform design is often sensitive to uncertainties in the initial parameter estimates. Following the min-max approach, a robust waveform covariance matrix (WCM) design is formulated in this work with the criterion of maximization of the worst-case output signal-interference-noise-ratio (SINR) under the constraint of the initial parameter estimation errors to ease this sensitivity systematically and thus improve the robustness of the detection performance to the uncertainties in the initial parameter estimates. To tackle the resultant complicated and nonlinear robust waveform optimization issue, a new diagonal loading (DL) based iterative approach is developed, in which the inner and outer optimization problems can be relaxed to convex problems by using DL method, and hence both of them can be solved very effectively. As compared to the non-robust method and uncorrelated waveforms, numerical simulations show that the proposed method can improve the robustness of the detection performance of STAP.

  • Proposed Hyperbolic NILT Method — Acceleration Techniques and Two-Dimensional Expansion for Electrical Engineering Applications

    Nawfal AL-ZUBAIDI R-SMITH  Lubomír BRANČÍK  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E101-A No:5
      Page(s):
    763-771

    Numerical inverse Laplace transform (NILT) methods are potential methods for time domain simulations, for instance the analysis of the transient phenomena in systems with lumped and/or distributed parameters. This paper proposes a numerical inverse Laplace transform method based originally on hyperbolic relations. The method is further enhanced by properly adapting several convergence acceleration techniques, namely, the epsilon algorithm of Wynn, the quotient-difference algorithm of Rutishauser and the Euler transform. The resulting accelerated models are compared as for their accuracy and computational efficiency. Moreover, an expansion to two dimensions is presented for the first time in the context of the accelerated hyperbolic NILT method, followed by the error analysis. The expansion is done by repeated application of one-dimensional partial numerical inverse Laplace transforms. A detailed static error analysis of the resulting 2D NILT is performed to prove the effectivness of the method. The work is followed by a practical application of the 2D NILT method to simulate voltage/current distributions along a transmission line. The method and application are programmed using the Matlab language.

421-440hit(3161hit)