The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

541-560hit(3161hit)

  • A Novel Memory-Based Radix-2 Fast Walsh-Hadamard-Fourier Transform Architecture

    Qianjian XING  Zhenguo MA  Feng YU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:6
      Page(s):
    1333-1337

    This letter presents a novel memory-based architecture for radix-2 fast Walsh-Hadamard-Fourier transform (FWFT) based on the constant geometry FWFT algorithm. It is composed of a multi-function Processing Engine, a conflict-free memory addressing scheme and an efficient twiddle factor generator. The address for memory access and the control signals for stride permutation are formulated in detail and the methods can be applied to other memory-based FFT-like architectures.

  • Robust Singing Transcription System Using Local Homogeneity in the Harmonic Structure

    Hoon HEO  Kyogu LEE  

     
    PAPER-Music Information Processing

      Pubricized:
    2017/02/18
      Vol:
    E100-D No:5
      Page(s):
    1114-1123

    Automatic music transcription from audio has long been one of the most intriguing problems and a challenge in the field of music information retrieval, because it requires a series of low-level tasks such as onset/offset detection and F0 estimation, followed by high-level post-processing for symbolic representation. In this paper, a comprehensive transcription system for monophonic singing voice based on harmonic structure analysis is proposed. Given a precise tracking of the fundamental frequency, a novel acoustic feature is derived to signify the harmonic structure in singing voice signals, regardless of the loudness and pitch. It is then used to generate a parametric mixture model based on the von Mises-Fisher distribution, so that the model represents the intrinsic harmonic structures within a region of smoothly connected notes. To identify the note boundaries, the local homogeneity in the harmonic structure is exploited by two different methods: the self-similarity analysis and hidden Markov model. The proposed system identifies the note attributes including the onset time, duration and note pitch. Evaluations are conducted from various aspects to verify the performance improvement of the proposed system and its robustness, using the latest evaluation methodology for singing transcription. The results show that the proposed system significantly outperforms other systems including the state-of-the-art systems.

  • Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension

    Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1109-1118

    We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding.

  • Joint Source and Relay Beamformer Design for General MIMO Relaying Broadcast Channel with Imperfect Channel State Information

    Yun LI  Haibin WAN  Wen CHEN  Tohru ASAMI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    852-864

    Effective communication strategies with a properly designed source precoding matrix (PM) and a properly designed relay beamforming matrix (BM) can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relaying broadcast channels (RBCs). In the present paper, we first propose a general communication scheme with non-regenerative relay that can overcome the half-duplex relay constraint of the general MIMO-RBC. Based on the proposed scheme, the robust source PM and relay BM are designed for imperfect channel state information at the transmitter (CSIT). In contrast to the conventional non-regenerative relaying communication scheme for the MIMO-RBC, in the proposed scheme, the source can send information continuously to the relay and users during two phases. Furthermore, in conjunction with the advanced precoding strategy, the proposed scheme can achieve a full-degree-of-freedom (DoF) MIMO-RBC with that each entry in the related channel matrix is considered to an i.i.d. complex Gaussian variable. The robust source PM and relay BM designs were investigated based on both throughput and fairness criteria with imperfect CSIT. However, solving the problems associated with throughput and fairness criteria for the robust source PM and relay BM designs is computationally intractable because these criteria are non-linear and non-convex. In order to address these difficulties, we first set up equivalent optimization problems based on a tight lower bound of the achievable rate. We then decompose the equivalent throughput problem into several decoupled subproblems with tractable solutions. Finally, we obtain the suboptimal solution for the throughput problem by an alternating optimization approach. We solve the fairness problem by introducing an adjusted algorithm according to the throughput problem. Finally, we demonstrate that, in both cases of throughput and fairness criteria, the proposed relaying communication scheme with precoding algorithms outperforms existing methods.

  • Perceptual Encryption Based on Features of Interpolating Curve for Vector Map

    Ngoc-Giao PHAM  Suk-Hwan LEE  Ki-Ryong KWON  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:5
      Page(s):
    1156-1164

    Nowadays, vector map content is widely used in the areas of life, science and the military. Due to the fact that vector maps bring great value and that their production process is expensive, a large volume of vector map data is attacked, stolen and illegally distributed by pirates. Thus, vector map data must be encrypted before being stored and transmitted in order to ensure the access and to prevent illegal copying. This paper presents a novel perceptual encryption algorithm for ensuring the secured storage and transmission of vector map data. Polyline data of vector maps are extracted to interpolate a spline curve, which is represented by an interpolating vector, the curvature degree coefficients, and control points. The proposed algorithm is based on encrypting the control points of the spline curve in the frequency domain of discrete cosine transform. Control points are transformed and selectively encrypted in the frequency domain of discrete cosine transform. They are then used in an inverse interpolation to generate the encrypted vector map. Experimental results show that the entire vector map is altered after the encryption process, and the proposed algorithm is very effective for a large dataset of vector maps.

  • Simulation Study of Low Latency Network Architecture Using Mobile Edge Computing

    Krittin INTHARAWIJITR  Katsuyoshi IIDA  Hiroyuki KOGA  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    963-972

    Attaining extremely low latency service in 5G cellular networks is an important challenge in the communication research field. A higher QoS in the next-generation network could enable several unprecedented services, such as Tactile Internet, Augmented Reality, and Virtual Reality. However, these services will all need support from powerful computational resources provided through cloud computing. Unfortunately, the geolocation of cloud data centers could be insufficient to satisfy the latency aimed for in 5G networks. The physical distance between servers and users will sometimes be too great to enable quick reaction within the service time boundary. The problem of long latency resulting from long communication distances can be solved by Mobile Edge Computing (MEC), though, which places many servers along the edges of networks. MEC can provide shorter communication latency, but total latency consists of both the transmission and the processing times. Always selecting the closest edge server will lead to a longer computing latency in many cases, especially when there is a mass of users around particular edge servers. Therefore, the research studies the effects of both latencies. The communication latency is represented by hop count, and the computation latency is modeled by processor sharing (PS). An optimization model and selection policies are also proposed. Quantitative evaluations using simulations show that selecting a server according to the lowest total latency leads to the best performance, and permitting an over-latency barrier would further improve results.

  • A Fast and Accurate FPGA System for Short Read Mapping Based on Parallel Comparison on Hash Table

    Yoko SOGABE  Tsutomu MARUYAMA  

     
    PAPER-Computer System

      Pubricized:
    2017/01/30
      Vol:
    E100-D No:5
      Page(s):
    1016-1025

    The purpose of DNA sequencing is to determine the order of nucleotides within a DNA molecule of target. The target DNA molecules are fragmented into short reads, which are short fixed-length subsequences composed of ‘A’, ‘C’, ‘G’ ‘T’, by next generation sequencing (NGS) machine. To reconstruct the target DNA from the short reads using a reference genome, which is a representative example of a species that was constructed in advance, it is necessary to determine their locations in the target DNA from where they have been extracted by aligning them onto the reference genome. This process is called short read mapping, and it is important to improve the performance of the short read mapping to realize fast DNA sequencing. We propose three types of FPGA acceleration methods based on hash table; (1) sorting and parallel comparison, (2) matching that allows one mutation to reduce the number of the candidates, (3) optimized hash function using variable masks. The first one reduces the number of accesses to off-chip memory to avoid the bottleneck by access latency. The second one enables to reduce the number of the candidates without degrading mapping sensitivity by allowing one mutation in the comparison. The last one reduces hash collisions using a table that was calculated from the reference genome in advance. We implemented the three methods on Xilinx Virtex-7 and evaluated them to show their effectiveness of them. In our experiments, our system achieves 20 fold of processing speed compared with BWA, which is one of the most popular mapping tools. Furthermore, we shows that the our system outperforms one of the fastest FPGA short read mapping systems.

  • Transition Mappings between De Bruijn Sequences

    Ming LI  Yupeng JIANG  Dongdai LIN  Qiuyan WANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:5
      Page(s):
    1254-1256

    We regard a De Bruijn sequence of order n as a bijection on $mathbb{F}_2^n$ and consider the transition mappings between them. It is shown that there are only two conjugate transformations that always transfer De Bruijn sequences to De Bruijn sequences.

  • Integration of Spatial Cue-Based Noise Reduction and Speech Model-Based Source Restoration for Real Time Speech Enhancement

    Tomoko KAWASE  Kenta NIWA  Masakiyo FUJIMOTO  Kazunori KOBAYASHI  Shoko ARAKI  Tomohiro NAKATANI  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1127-1136

    We propose a microphone array speech enhancement method that integrates spatial-cue-based source power spectral density (PSD) estimation and statistical speech model-based PSD estimation. The goal of this research was to clearly pick up target speech even in noisy environments such as crowded places, factories, and cars running at high speed. Beamforming with post-Wiener filtering is commonly used in many conventional studies on microphone-array noise reduction. For calculating a Wiener filter, speech/noise PSDs are essential, and they are estimated using spatial cues obtained from microphone observations. Assuming that the sound sources are sparse in the temporal-spatial domain, speech/noise PSDs may be estimated accurately. However, PSD estimation errors increase under circumstances beyond this assumption. In this study, we integrated speech models and PSD-estimation-in-beamspace method to correct speech/noise PSD estimation errors. The roughly estimated noise PSD was obtained frame-by-frame by analyzing spatial cues from array observations. By combining noise PSD with the statistical model of clean-speech, the relationships between the PSD of the observed signal and that of the target speech, hereafter called the observation model, could be described without pre-training. By exploiting Bayes' theorem, a Wiener filter is statistically generated from observation models. Experiments conducted to evaluate the proposed method showed that the signal-to-noise ratio and naturalness of the output speech signal were significantly better than that with conventional methods.

  • Reliability of a Circular Connected-(1,2)-or-(2,1)-out-of-(m,n):F Lattice System with Identical Components

    Taishin NAKAMURA  Hisashi YAMAMOTO  Takashi SHINZATO  Xiao XIAO  Tomoaki AKIBA  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E100-A No:4
      Page(s):
    1029-1036

    Using a matrix approach based on a Markov process, we investigate the reliability of a circular connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system for the i.i.d. case. We develop a modified linear lattice system that is equivalent to this circular system, and propose a methodology that allows the systematic calculation of the reliability. It is based on ideas presented by Fu and Hu [6]. A partial transition probability matrix is used to reduce the computational complexity of the calculations, and closed formulas are derived for special cases.

  • Improve the Prediction of Student Performance with Hint's Assistance Based on an Efficient Non-Negative Factorization

    Ke XU  Rujun LIU  Yuan SUN  Keju ZOU  Yan HUANG  Xinfang ZHANG  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    768-775

    In tutoring systems, students are more likely to utilize hints to assist their decisions about difficult or confusing problems. In the meanwhile, students with weaker knowledge mastery tend to choose more hints than others with stronger knowledge mastery. Hints are important assistances to help students deal with questions. Students can learn from hints and enhance their knowledge about questions. In this paper we firstly use hints alone to build a model named Hints-Model to predict student performance. In addition, matrix factorization (MF) has been prevalent in educational fields to predict student performance, which is derived from their success in collaborative filtering (CF) for recommender systems (RS). While there is another factorization method named non-negative matrix factorization (NMF) which has been developed over one decade, and has additional non-negative constrains on the factorization matrices. Considering the sparseness of the original matrix and the efficiency, we can utilize an element-based matrix factorization called regularized single-element-based NMF (RSNMF). We compared the results of different factorization methods to their combination with Hints-Model. From the experiment results on two datasets, we can find the combination of RSNMF with Hints-Model has achieved significant improvement and obtains the best result. We have also compared the Hints-Model with the pioneer approach performance factor analysis (PFA), and the outcomes show that the former method exceeds the later one.

  • On the Performance of Dual-Hop Variable-Gain AF Relaying with Beamforming over η-µ Fading Channels

    Ayaz HUSSAIN  Sang-Hyo KIM  Seok-Ho CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/17
      Vol:
    E100-B No:4
      Page(s):
    619-626

    A dual-hop amplify-and-forward (AF) relaying system with beamforming is analyzed over η-µ fading channels that includes Nakagami-m, Nakagami-q (Hoyt), and Rayleigh fading channels as special cases. New and exact expressions for the outage probability (OP) and average capacity are derived. Moreover, a new asymptotic analysis is also conducted for the OP and average capacity in terms of basic elementary functions which make it easy to understand the system behavior and the impact of channel parameters. The viability of the analysis is verified by Monte Carlo simulations.

  • Microblog Retrieval Using Ensemble of Feature Sets through Supervised Feature Selection

    Abu Nowshed CHY  Md Zia ULLAH  Masaki AONO  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    793-806

    Microblog, especially twitter, has become an integral part of our daily life for searching latest news and events information. Due to the short length characteristics of tweets and frequent use of unconventional abbreviations, content-relevance based search cannot satisfy user's information need. Recent research has shown that considering temporal and contextual aspects in this regard has improved the retrieval performance significantly. In this paper, we focus on microblog retrieval, emphasizing the alleviation of the vocabulary mismatch, and the leverage of the temporal (e.g., recency and burst nature) and contextual characteristics of tweets. To address the temporal and contextual aspect of tweets, we propose new features based on query-tweet time, word embedding, and query-tweet sentiment correlation. We also introduce some popularity features to estimate the importance of a tweet. A three-stage query expansion technique is applied to improve the relevancy of tweets. Moreover, to determine the temporal and sentiment sensitivity of a query, we introduce query type determination techniques. After supervised feature selection, we apply random forest as a feature ranking method to estimate the importance of selected features. Then, we make use of ensemble of learning to rank (L2R) framework to estimate the relevance of query-tweet pair. We conducted experiments on TREC Microblog 2011 and 2012 test collections over the TREC Tweets2011 corpus. Experimental results demonstrate the effectiveness of our method over the baseline and known related works in terms of precision at 30 (P@30), mean average precision (MAP), normalized discounted cumulative gain at 30 (NDCG@30), and R-precision (R-Prec) metrics.

  • Mainlobe Anti-Jamming via Eigen-Projection Processing and Covariance Matrix Reconstruction

    Zhangkai LUO  Huali WANG  Wanghan LV  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1055-1059

    In this letter, a novel mainlobe anti-jamming method via eigen-projection processing and covariance matrix reconstruction is proposed. The present work mainly focuses on two aspects: the first aspect is to obtain the eigenvector of the mainlobe interference accurately in order to form the eigen-projection matrix to suppress the mainlobe interference. The second aspect is to reconstruct the covariance matrix which is uesd to calculate the adaptive weight vector for forming an ideal beam pattern. Additionally, the self-null effect caused by the signal of interest and the sidelobe interferences elimination are also considered in the proposed method. Theoretical analysis and simulation results demonstrate that the proposed method can suppress the mainlobe interference effectively and achieve a superior performance.

  • Quick Window Query Processing Using a Non-Uniform Cell-Based Index in Wireless Data Broadcast Environment

    SeokJin IM  HeeJoung HWANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:4
      Page(s):
    1092-1096

    This letter proposes a Non-uniform Cell-based Index (NCI) to enable clients to quickly process window queries in the wireless spatial data broadcast environment. To improve the access time, NCI reduces the probe wait time by equalized spacing between indexes, using non-uniformly partitioned cells of data space. Through the performance evaluation, we show the proposed NCI outperforms the existing index schemes for window queries to spatial data in respect of access time.

  • Capacity Control of Social Media Diffusion for Real-Time Analysis System

    Miki ENOKI  Issei YOSHIDA  Masato OGUCHI  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    776-784

    In Twitter-like services, countless messages are being posted in real-time every second all around the world. Timely knowledge about what kinds of information are diffusing in social media is quite important. For example, in emergency situations such as earthquakes, users provide instant information on their situation through social media. The collective intelligence of social media is useful as a means of information detection complementary to conventional observation. We have developed a system for monitoring and analyzing information diffusion data in real-time by tracking retweeted tweets. A tweet retweeted by many users indicates that they find the content interesting and impactful. Analysts who use this system can find tweets retweeted by many users and identify the key people who are retweeted frequently by many users or who have retweeted tweets about particular topics. However, bursting situations occur when thousands of social media messages are suddenly posted simultaneously, and the lack of machine resources to handle such situations lowers the system's query performance. Since our system is designed to be used interactively in real-time by many analysts, waiting more than one second for a query results is simply not acceptable. To maintain an acceptable query performance, we propose a capacity control method for filtering incoming tweets using extra attribute information from tweets themselves. Conventionally, there is a trade-off between the query performance and the accuracy of the analysis results. We show that the query performance is improved by our proposed method and that our method is better than the existing methods in terms of maintaining query accuracy.

  • An Iteration Based Beamforming Method for Planar Phased Array in Millimeter-Wave Communication

    Junlin TANG  Guangrong YUE  Lei CHEN  Shaoqian LI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E100-C No:4
      Page(s):
    399-406

    Nowadays, with the extensive use of smart devices, the amount of mobile data is experiencing an exponential growth. As a result, accommodating the large amount of traffic is important for the future 5G mobile communication. Millimeter-wave band, which has a lot of spectrum resources to meet the demand brought by the growth of mobile data, is becoming an important part of 5G technology. In order to mitigate the high path loss brought by the high frequency band, beamforming is often used to enhance the gain of a link. In this paper, we propose an iteration-based beamforming method for planar phased array. When compared to a linear array, a planar phased array points a smaller area which ensures a better link performance. We deduce that different paths of millimeter-wave channel are approximately orthogonal when the antenna array is large, which forms the basis of our iterative approach. We also discuss the development of the important millimeter-wave device-phase shifter, and its effect on the performance of the proposed beamforming method. From the simulation, we prove that our method has a performance close to the singular vector decomposition (SVD) method and is superior to the method in IEEE802.15.3c. Moreover, the channel capacity of the proposed method is at most 0.41bps/Hz less than the SVD method. We also show that the convergence of the proposed method could be achieved within 4 iterations and a 3-bit phase shifter is enough for practical implementation.

  • Link Quality Information Sharing by Compressed Sensing and Compressed Transmission for Arbitrary Topology Wireless Mesh Networks

    Hiraku OKADA  Shuhei SUZAKI  Tatsuya KATO  Kentaro KOBAYASHI  Masaaki KATAYAMA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/09/20
      Vol:
    E100-B No:3
      Page(s):
    456-464

    We proposed to apply compressed sensing to realize information sharing of link quality for wireless mesh networks (WMNs) with grid topology. In this paper, we extend the link quality sharing method to be applied for WMNs with arbitrary topology. For arbitrary topology WMNs, we introduce a link quality matrix and a matrix formula for compressed sensing. By employing a diffusion wavelets basis, the link quality matrix is converted to its sparse equivalent. Based on the sparse matrix, information sharing is achieved by compressed sensing. In addition, we propose compressed transmission for arbitrary topology WMNs, in which only the compressed link quality information is transmitted. Experiments and simulations clarify that the proposed methods can reduce the amount of data transmitted for information sharing and maintain the quality of the shared information.

  • Two Classes of 1-Resilient Prime-Variable Rotation Symmetric Boolean Functions

    Lei SUN  Fang-Wei FU  Xuan GUANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:3
      Page(s):
    902-907

    Recent research has shown that the class of rotation symmetric Boolean functions is beneficial to cryptographics. In this paper, for an odd prime p, two sufficient conditions for p-variable rotation symmetric Boolean functions to be 1-resilient are obtained, and then several concrete constructions satisfying the conditions are presented. This is the first time that resilient rotation symmetric Boolean functions have been systematically constructed. In particular, we construct a class of 2-resilient rotation symmetric Boolean functions when p=2m+1 for m ≥ 4. Moreover, several classes of 1-order correlation immune rotation symmetric Boolean functions are also got.

  • Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors Open Access

    Taro YAMASHITA  Shigehito MIKI  Hirotaka TERAI  

     
    INVITED PAPER

      Vol:
    E100-C No:3
      Page(s):
    274-282

    In this review, we present recent advances relating to superconducting nanowire single-photon detectors (SSPDs or SNSPDs) and their broad range of applications. During a period exceeding ten years, the system performance of SSPDs has been drastically improved, and lately excellent detection efficiencies have been realized in practical systems for a wide range of target photon wavelengths. Owing to their advantages such as high system detection efficiency, low dark count rate, and excellent timing jitter, SSPDs have found application in various research fields such as quantum information, quantum optics, optical communication, and also in the life sciences. We summarize the photon detection principle and the current performance status of practical SSPD systems. In addition, we introduce application examples in which SSPDs have been applied.

541-560hit(3161hit)