The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

461-480hit(3161hit)

  • A RGB-Guided Low-Rank Method for Compressive Hyperspectral Image Reconstruction

    Limin CHEN  Jing XU  Peter Xiaoping LIU  Hui YU  

     
    PAPER-Image

      Vol:
    E101-A No:2
      Page(s):
    481-487

    Compressive spectral imaging (CSI) systems capture the 3D spatiospectral data by measuring the 2D compressed focal plane array (FPA) coded projection with the help of reconstruction algorithms exploiting the sparsity of signals. However, the contradiction between the multi-dimension of the scenes and the limited dimension of the sensors has limited improvement of recovery performance. In order to solve the problem, a novel CSI system based on a coded aperture snapshot spectral imager, RGB-CASSI, is proposed, which has two branches, one for CASSI, another for RGB images. In addition, considering that conventional reconstruction algorithms lead to oversmoothing, a RGB-guided low-rank (RGBLR) method for compressive hyperspectral image reconstruction based on compressed sensing and coded aperture spectral imaging system is presented, in which the available additional RGB information is used to guide the reconstruction and a low-rank regularization for compressive sensing and a non-convex surrogate of the rank is also used instead of nuclear norm for seeking a preferable solution. Experiments show that the proposed algorithm performs better in both PSNR and subjective effects compared with other state-of-art methods.

  • Wideband Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Covariance Matrix Reconstruction

    Pei CHEN  Dexiu HU  Yongjun ZHAO  Chengcheng LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    548-554

    Aiming at solving the performance degradation caused by the covariance matrix mismatch in wideband beamforming for conformal arrays, a novel adaptive beamforming algorithm is proposed in this paper. In this algorithm, the interference-plus-noise covariance matrix is firstly reconstructed to solve the desired signal contamination problem. Then, a sparse reconstruction method is utilized to reduce the high computational cost and the requirement of sampling data. A novel cost function is formulated by the focusing matrix and singular value decomposition. Finally, the optimization problem is efficiently solved in a second-order cone programming framework. Simulation results using a cylindrical array demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing wideband beamforming methods for conformal arrays.

  • Robust Secure Transmit Design for SWIPT System with Many Types of Wireless Users and Passive Eavesdropper

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    441-450

    This paper studies a simultaneous wireless information and power transfer (SWIPT) system in which the transmitter not only sends data and energy to many types of wireless users, such as multiple information decoding users, multiple hybrid power-splitting users (i.e., users with a power-splitting structure to receive both information and energy), and multiple energy harvesting users, but also prevents information from being intercepted by a passive eavesdropper. The transmitter is equipped with multiple antennas, whereas all users and the eavesdropper are assumed to be equipped with a single antenna. Since the transmitter does not have any channel state information (CSI) about the eavesdropper, artificial noise (AN) power is maximized to mask information as well as to interfere with the eavesdropper as much as possible. The non-convex optimization problem is formulated to minimize the transmit power satisfying all signal-to-interference-plus-noise (SINR) and harvested energy requirements for all users so that the remaining power for generating AN is maximized. With perfect CSI, a semidefinite relaxation (SDR) technique is applied, and the optimal solution is proven to be tight. With imperfect CSI, SDR and a Gaussian randomization algorithm are proposed to find the suboptimal solution. Finally, numerical performance with respect to the maximum SINR at the eavesdropper is determined by a Monte-Carlo simulation to compare the proposed AN scenario with a no-AN scenario, as well as to compare perfect CSI with imperfect CSI.

  • Demultiplexing Method of Variable Capacity Optical OFDM Signal Using Time Lens-Based Optical Fourier Transform Open Access

    Koichi TAKIGUCHI  Takaaki NAKAGAWA  Takaaki MIWA  

     
    PAPER-Optoelectronics

      Vol:
    E101-C No:2
      Page(s):
    112-117

    We propose and demonstrate a method that can demultiplex an optical OFDM signal with various capacity based on time lens-based optical Fourier transform. The proposed tunable optical OFDM signal demultiplexer is composed of a phase modulator and a tunable chromatic dispersion emulator. The spectrum of the variable capacity OFDM signal is transformed into Nyquist time-division multiplexing pulses with the optical Fourier transform, and the OFDM sub-carrier channels are dumultiplexed in the time-domain. We also propose a simple method for approximating and generating quadratic waveform to drive the phase modulator. After explaining the operating principle of the method and the design of some parameters in detail, we show successful demultiplexing of 4×8 and 4×10 Gbit/s optical OFDM signals with our proposed method as the preliminary investigation results.

  • Learning Supervised Feature Transformations on Zero Resources for Improved Acoustic Unit Discovery

    Michael HECK  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/10/20
      Vol:
    E101-D No:1
      Page(s):
    205-214

    In this work we utilize feature transformations that are common in supervised learning without having prior supervision, with the goal to improve Dirichlet process Gaussian mixture model (DPGMM) based acoustic unit discovery. The motivation of using such transformations is to create feature vectors that are more suitable for clustering. The need of labels for these methods makes it difficult to use them in a zero resource setting. To overcome this issue we utilize a first iteration of DPGMM clustering to generate frame based class labels for the target data. The labels serve as basis for learning linear discriminant analysis (LDA), maximum likelihood linear transform (MLLT) and feature-space maximum likelihood linear regression (fMLLR) based feature transformations. The novelty of our approach is the way how we use a traditional acoustic model training pipeline for supervised learning to estimate feature transformations in a zero resource scenario. We show that the learned transformations greatly support the DPGMM sampler in finding better clusters, according to the performance of the DPGMM posteriorgrams on the ABX sound class discriminability task. We also introduce a method for combining posteriorgram outputs of multiple clusterings and demonstrate that such combinations can further improve sound class discriminability.

  • Design Study of Domain Decomposition Operation in Dataflow Architecture FDTD/FIT Dedicated Computer

    Hideki KAWAGUCHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    20-25

    To aim to achieve a high-performance computation for microwave simulations with low cost, small size machine and low energy consumption, a method of the FDTD dedicated computer has been investigated. It was shown by VHDL logical circuit simulations that the FDTD dedicated computer with a dataflow architecture has much higher performance than that of high-end PC and GPU. Then the remaining task of this work is large scale computations by the dedicated computer, since microwave simulations for only 18×18×Z grid space (Z is the number of girds for z direction) can be executed in a single FPGA at most. To treat much larger numerical model size for practical applications, this paper considers an implementation of a domain decomposition method operation of the FDTD dedicated computer in a single FPGA.

  • Scalable Cache Component in ICN Adaptable to Various Network Traffic Access Patterns

    Atsushi OOKA  Eum SUYONG  Shingo ATA  Masayuki MURATA  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    35-48

    Information-centric networking (ICN) has received increasing attention from all over the world. The novel aspects of ICN (e.g., the combination of caching, multicasting, and aggregating requests) is based on names that act as addresses for content. The communication with name has the potential to cope with the growing and complicating Internet technology, for example, Internet of Things, cloud computing, and a smart society. To realize ICN, router hardware must implement an innovative cache replacement algorithm that offers performance far superior to a simple policy-based algorithm while still operating with feasible computational and memory overhead. However, most previous studies on cache replacement policies in ICN have proposed policies that are too blunt to achieve significant performance improvement, such as first-in first-out (popularly, FIFO) and random policies, or impractical policies in a resource-restricted environment, such as least recently used (LRU). Thus, we propose CLOCK-Pro Using Switching Hash-tables (CUSH) as the suitable policy for network caching. CUSH can identify and keep popular content worth caching in a network environment. CUSH also employs CLOCK and hash-tables, which are low-overhead data structure, to satisfy the cost requirement. We numerically evaluate our proposed approach, showing that our proposal can achieve cache hits against the traffic traces that simple conventional algorithms hardly cause any hits.

  • Black-Box Separations on Fiat-Shamir-Type Signatures in the Non-Programmable Random Oracle Model

    Masayuki FUKUMITSU  Shingo HASEGAWA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    77-87

    In recent years, Fischlin and Fleischhacker showed the impossibility of proving the security of specific types of FS-type signatures, the signatures constructed by the Fiat-Shamir transformation, via a single-instance reduction in the non-programmable random oracle model (NPROM, for short). In this paper, we pose a question whether or not the impossibility of proving the security of any FS-type signature can be shown in the NPROM. For this question, we show that each FS-type signature cannot be proven to be secure via a key-preserving reduction in the NPROM from the security against the impersonation of the underlying identification scheme under the passive attack, as long as the identification scheme is secure against the impersonation under the active attack. We also show the security incompatibility between the security of some FS-type signatures in the NPROM via a single-instance key-preserving reduction and the underlying cryptographic assumptions. By applying this result to the Schnorr signature, one can prove the incompatibility between the security of the Schnorr signature in this situation and the discrete logarithm assumption, whereas Fischlin and Fleischhacker showed that such an incompatibility cannot be proven via a non-key-preserving reduction.

  • A Local Feature Aggregation Method for Music Retrieval

    Jin S. SEO  

     
    LETTER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    64-67

    The song-level feature summarization is an essential building block for browsing, retrieval, and indexing of digital music. This paper proposes a local pooling method to aggregate the feature vectors of a song over the universal background model. Two types of local activation patterns of feature vectors are derived; one representation is derived in the form of histogram, and the other is given by a binary vector. Experiments over three publicly-available music datasets show that the proposed local aggregation of the auditory features is promising for music-similarity computation.

  • Legitimate Surveillance with a Wireless Powered Monitor in Rayleigh Fading Channels

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:1
      Page(s):
    293-297

    This letter investigates the performance of a legitimate surveillance system, where a wireless powered legitimate monitor aims to eavesdrop a suspicious communication link. Power splitting technique is adopted at the monitor for simultaneous information eavesdropping and energy harvesting. In order to maximize the successful eavesdropping probability, the power splitting ratio is optimized under the minimum harvested energy constraint. Assuming that perfect channel state information (CSI) or only the channel distribution information (CDI) is available, the closed-form maximum successful eavesdropping probability is obtained in Rayleigh fading channels. It is shown that the minimum harvested energy constraint has no impact on the eavesdropping performance if the minimum harvested energy constraint is loose. It is also shown that the eavesdropping performance loss due to partial knowledge of CSI is negligible when the eavesdropping link channel condition is much better than that of the suspicious communication link channel.

  • Performance Analysis of a Cognitive Radio Network with Imperfect Spectrum Sensing

    Osama SALAMEH  Koen DE TURCK  Dieter FIEMS  Herwig BRUNEEL  Sabine WITTEVRONGEL  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/22
      Vol:
    E101-B No:1
      Page(s):
    213-222

    In Cognitive Radio Networks (CRNs), spectrum sensing is performed by secondary (unlicensed) users to utilize transmission opportunities, so-called white spaces or spectrum holes, in the primary (licensed) frequency bands. Secondary users (SUs) perform sensing upon arrival to find an idle channel for transmission as well as during transmission to avoid interfering with primary users (PUs). In practice, spectrum sensing is not perfect and sensing errors including false alarms and misdetections are inevitable. In this paper, we develop a continuous-time Markov chain model to study the effect of false alarms and misdetections of SUs on several performance measures including the collision rate between PUs and SUs, the throughput of SUs and the SU delay in a CRN. Numerical results indicate that sensing errors can have a high impact on the performance measures.

  • Scalable Distributed Video Coding for Wireless Video Sensor Networks

    Hong YANG  Linbo QING  Xiaohai HE  Shuhua XIONG  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    20-27

    Wireless video sensor networks address problems, such as low power consumption of sensor nodes, low computing capacity of nodes, and unstable channel bandwidth. To transmit video of distributed video coding in wireless video sensor networks, we propose an efficient scalable distributed video coding scheme. In this scheme, the scalable Wyner-Ziv frame is based on transmission of different wavelet information, while the Key frame is based on transmission of different residual information. A successive refinement of side information for the Wyner-Ziv and Key frames are proposed in this scheme. Test results show that both the Wyner-Ziv and Key frames have four layers in quality and bit-rate scalable, but no increase in complexity of the encoder.

  • Performance Analysis of Content-Centric Networking on an Arbitrary Network Topology

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    24-34

    In this paper, we use the MCA (Multi-Cache Approximation) algorithm to numerically determine cache hit probability in a multi-cache network. We then analytically obtain performance metrics for Content-Centric networking (CCN). Our analytical model contains multiple routers, multiple repositories (e.g., storage servers), and multiple entities (e.g., clients). We obtain three performance metrics: content delivery delay (i.e., the average time required for an entity to retrieve a content through a neighboring router), throughput (i.e., number of contents delivered from an entity per unit of time), and availability (i.e., probability that an entity can successfully retrieve a content from a network). Through several numerical examples, we investigate how network topology affects the performance of CCN. A notable finding is that content caching becomes more beneficial in terms of content delivery time and availability (resp., throughput) as distance between the entity and the requesting repository narrows (resp., widens).

  • Deep Learning-Based Fault Localization with Contextual Information

    Zhuo ZHANG  Yan LEI  Qingping TAN  Xiaoguang MAO  Ping ZENG  Xi CHANG  

     
    LETTER-Software Engineering

      Pubricized:
    2017/09/08
      Vol:
    E100-D No:12
      Page(s):
    3027-3031

    Fault localization is essential for solving the issue of software faults. Aiming at improving fault localization, this paper proposes a deep learning-based fault localization with contextual information. Specifically, our approach uses deep neural network to construct a suspiciousness evaluation model to evaluate the suspiciousness of a statement being faulty, and then leverages dynamic backward slicing to extract contextual information. The empirical results show that our approach significantly outperforms the state-of-the-art technique Dstar.

  • Energy Budget Formulation in Progress-Based Nearest Forwarding Routing Policy for Energy-Efficient Wireless Sensor Networks

    Sho SASAKI  Yuichi MIYAJI  Hideyuki UEHARA  

     
    PAPER-Wireless networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2808-2817

    A number of battery-driven sensor nodes are deployed to operate a wireless sensor network, and many routing protocols have been proposed to reduce energy consumption for data communications in the networks. We have proposed a new routing policy which employs a nearest-neighbor forwarding based on hop progress. Our proposed routing method has a topology parameter named forwarding angle to determine which node to connect with as a next-hop, and is compared with other existing policies to clarify the best topology for energy efficiency. In this paper, we also formulate the energy budget for networks with the routing policy by means of stochastic-geometric analysis on hop-count distributions for random planar networks. The formulation enables us to tell how much energy is required for all nodes in the network to forward sensed data in a pre-deployment phase. Simulation results show that the optimal topology varies according to node density in the network. Direct communication to the sink is superior for a small-sized network, and the multihop routing is more effective as the network becomes sparser. Evaluation results also demonstrate that our energy formulation can well approximate the energy budget, especially for small networks with a small forwarding angle. Discussion on the error with a large forwarding angle is then made with a geographical metric. It is finally clarified that our analytical expressions can obtain the optimal forwarding angle which yields the best energy efficiency for the routing policy when the network is moderately dense.

  • A Layout-Oriented Routing Method for Low-Latency HPC Networks

    Ryuta KAWANO  Hiroshi NAKAHARA  Ikki FUJIWARA  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Interconnection networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2796-2807

    End-to-end network latency has become an important issue for parallel application on large-scale high performance computing (HPC) systems. It has been reported that randomly-connected inter-switch networks can lower the end-to-end network latency. This latency reduction is established in exchange for a large amount of routing information. That is, minimal routing on irregular networks is achieved by using routing tables for all destinations in the networks. In this work, a novel distributed routing method called LOREN (Layout-Oriented Routing with Entries for Neighbors) to achieve low-latency with a small routing table is proposed for irregular networks whose link length is limited. The routing tables contain both physically and topologically nearby neighbor nodes to ensure livelock-freedom and a small number of hops between nodes. Experimental results show that LOREN reduces the average latencies by 5.8% and improves the network throughput by up to 62% compared with a conventional compact routing method. Moreover, the number of required routing table entries is reduced by up to 91%, which improves scalability and flexibility for implementation.

  • Energy-Performance Modeling of Speculative Checkpointing for Exascale Systems

    Muhammad ALFIAN AMRIZAL  Atsuya UNO  Yukinori SATO  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  

     
    PAPER-High performance computing

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2749-2760

    Coordinated checkpointing is a widely-used checkpoint/restart protocol for fault-tolerance in large-scale HPC systems. However, this protocol will involve massive amounts of I/O concentration, resulting in considerably high checkpoint overhead and high energy consumption. This paper focuses on speculative checkpointing, a CPR mechanism that allows for temporal distribution of checkpointings to avoid I/O concentration. We propose execution time and energy models for speculative checkpointing, and investigate energy-performance characteristics when speculative checkpointing is adopted in exascale systems. Using these models, we study the benefit of speculative checkpointing over coordinated checkpointing under various realistic scenarios for exascale HPC systems. We show that, compared to coordinated checkpointing, speculative checkpointing can achieve up to a 11% energy reduction at the cost of a relatively-small increase in the execution time. In addition, a significant energy-performance trade-off is expected when the system scale exceeds 1.2 million nodes.

  • A Study on the Error Performance of Soft-Decision Decodings for Binary Linear Codes on a 4-Level Quantization over an AWGN Channel

    Takuya KUSAKA  

     
    PAPER-Coding Theory

      Vol:
    E100-A No:12
      Page(s):
    3016-3022

    In this paper, a study on the design and implementation of uniform 4-level quantizers for soft-decision decodings for binary linear codes is shown. Simulation results on quantized Viterbi decoding with a 4-level quantizer for the (64,42,8) Reed-Muller code show that the optimum stepsize, which is derived from the cutoff rate, gives an almost optimum error performance. In addition, the simulation results show that the case where the number of optimum codewords is larger than the one for a received sequence causes non-negligible degradation on error performance at high SN ratios of Eb/N0.

  • A Cheating-Detectable (k, L, n) Ramp Secret Sharing Scheme

    Wataru NAKAMURA  Hirosuke YAMAMOTO  Terence CHAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2709-2719

    In this paper, we treat (k, L, n) ramp secret sharing schemes (SSSs) that can detect impersonation attacks and/or substitution attacks. First, we derive lower bounds on the sizes of the shares and random number used in encoding for given correlation levels, which are measured by the mutual information of shares. We also derive lower bounds on the success probabilities of attacks for given correlation levels and given sizes of shares. Next we propose a strong (k, L, n) ramp SSS against substitution attacks. As far as we know, the proposed scheme is the first strong (k, L, n) ramp SSSs that can detect substitution attacks of at most k-1 shares. Our scheme can be applied to a secret SL uniformly distributed over GF(pm)L, where p is a prime number with p≥L+2. We show that for a certain type of correlation levels, the proposed scheme can achieve the lower bounds on the sizes of the shares and random number, and can reduce the success probability of substitution attacks within nearly L times the lower bound when the number of forged shares is less than k. We also evaluate the success probability of impersonation attack for our schemes. In addition, we give some examples of insecure ramp SSSs to clarify why each component of our scheme is essential to realize the required security.

  • Design Methods of Filter-and-Forward Relay Beamforming for OFDM-Based Cognitive Networks

    Song YANG  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/09
      Vol:
    E100-B No:12
      Page(s):
    2147-2155

    In this paper, we propose filter-and-forward beamforming (FF-BF) for cognitive two-way relay networks in which secondary users employ an orthogonal frequency-division multiplexing (OFDM) system. Secondary transceivers communicate with each other through multiple relays to obtain BF gain as well as to suppress the interference between the primary and secondary users who share the same spectrum. We consider two FF-BF design methods to optimize the relay filter. The first method enhances the quality of service of the secondary network by maximizing the worst subcarrier signal-to-interference-plus-noise ratio (SINR) subject to transmit power constraints. The second method suppresses the interference from the secondary network to the primary network through the minimization of the relay transmission power subject to subcarrier SINR constraints. Simulation results show that the proposed FF-BF improves system performance in comparison to amplify-and-forward relay BF.

461-480hit(3161hit)