Kenji ARAKI Fengchao XIAO Yoshio KAMI
To evaluate frequency-domain interference between orthogonally intersecting stripline geometries, a lumped mutual capacitance was incorporated into a circuit model, and then a simplified circuit was proposed in the previous paper. The circuit model was approximated from an investigation of the distribution of mutual capacitance but it has remained how the capacitance is approximated. In this paper, a technique using an error function is proposed for the problem. Then, the time-domain response in an analytical expression is studied using the simplified circuit model in a Laplace transformation to make the mechanism clear. Comparing the experimental and the computed results verifies the proposed models.
Yao-Kun CHEN Huang Chang LEE Shyue-Win WEI
A modified successive interference cancellation (SIC) algorithm for orthogonal frequency division multiplexing (OFDM) system is presented. The presented modified SIC algorithm makes use of an index sequence to avoid the subcarriers re-ordering calculation. Furthermore, by combining the SIC with the conventional zero-forcing (ZF) detection, computation complexity of the presented algorithm can be significantly reduced and meanwhile excellent performance can be maintained.
Masahiro FUJII Atsushi MINAKAWA Yu WATANABE Makoto ITAMI Kohji ITOH
In this paper, we propose a new algorithm to detect the presence of narrow band interference signals on the band of an Ultra Wide-Band (UWB) system when the UWB spectrum overlaps the bands of other narrow band wireless services. In our proposed algorithm for an UWB Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) system, an appropriate model is selected from the assumed interference models based on the Akaike Information Criterion (AIC) which is an explicit theoretic criterion and a measure of fit of the model. The proposed algorithm does not need a priori information on the interference signals except that we can reduce a computational complexity to implement the algorithm if we have knowledge of the bands of the interference signals. Furthermore, we introduce the Expectation Maximization (EM) algorithm to our algorithm in order to estimate the transmitted signals and the interference signals simultaneously. The proposed algorithm may not require the pilot symbols in the assumed UWB system to detect the presence of other systems. By computer simulations, we show that the proposed algorithm validly detects the presence of interference signals on the UWB band.
Ranga HETTIARACHCHI Mitsuo YOKOYAMA Hideyuki UEHARA
This paper presents a novel interference cancellation (IC) scheme for both synchronous and asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless channels. In the DS-CDMA system, the multiple access interference (MAI) and the near-far problem (NFP) are the two factors which reduce the capacity of the system. In this paper, we propose a new algorithm that is able to detect all interference signals as an individual MAI signal by maximum correlation detection. It is based on the discovery of all the unknowing spreading codes of the interference signals. Then, all possible MAI patterns so called replicas are generated as a summation of interference signals. And the true MAI pattern is found by taking correlation between the received signal and the replicas. Moreover, the receiver executes MAI cancellation in a successive manner, removing all interference signals by single-stage. Numerical results will show that the proposed IC strategy, which alleviates the detrimental effect of the MAI and the near-far problem, can significantly improve the system performance. Especially, we can obtain almost the same receiving characteristics as in the absense of interference for asynchrnous system when received powers are equal. Also, the same performances can be seen under any received power state for synchronous system.
Teruyuki MIYAJIMA Yoshihisa WATANABE
In block transmission systems, blind channel shortening methods are known to be effective to reduce the influence of interblock interference which degrades the performance when the length of a channel impulse response is extremely long. Conventional methods assume that the transmitted signal is uncorrelated; however, this assumption is invalid in practical systems such as OFDM with null carriers and MC-CDMA. In this paper, we consider blind channel shortening methods for block transmissions when the transmitted samples within a block are correlated. First, the channel shortening ability of a conventional method is clarified. Next, a new method which exploits the fact that the transmitted samples in different blocks are uncorrelated is introduced. It is shown that the proposed method can shorten the channel properly under certain conditions. Finally, simulation results of OFDM and MC-CDMA systems are shown to verify the effectiveness of the proposed method compared with a conventional one.
Maintaining the lowest possible transmission power in the wireless sensor networks (WSNs) is vulnerable to the interference fluctuations because of the bad signal-to-interference-plus-noise-ratio (SINR). The previous transmission power control (TPC) algorithms do not consider much for the interferences from other 2.4 GHz devices, which can cause significant performance degradations in real world deployments. This paper proposes the interference-aware transmission power control (I-TPC) algorithm for WSNs. In the proposed algorithm, each node dynamically adjusts the transmission power and the received signal strength (RSS) target, hence the appropriate SINR is provided even when the wireless LAN (WLAN) interferences become strong. The experimental results show that the proposed algorithm outperforms the previous algorithms in terms of the energy and the packet reception ratio (PRR) performance in WLAN interference environments.
This paper gives a survey and comparison of algorithms for the detection of binary data in the presence of two-dimensional (2-D) intersymbol interference. This is a general problem of communication theory, because it can be applied to various practical problems in data storage and transmission. Major results on trellis-based detection algorithms, previously disparate are drawn together, and placed into a common framework. All algorithms have better complexity than optimal detection, and complexity is compared. On the one hand, many algorithms perform within 1.0 dB or better of optimal performance. On the other hand, none of these proposed algorithms can find the optimal solution at high SNR, which is surprising. Extensive discussion outlines further open problems.
Tuchsanai PLOYSUWAN Sawat TANTIPHANWADI Prasit TEEKAPUT
In this paper, we develop a new iterative turbo multiuser detector for direct sequence code-division multiple access (DS-CDMA) systems over unknown frequency-selective channels by decomposing the observation signal into a number of signal components. Virtual trellis model representing the ISI channel for each separating signal user is designed to generate extrinsic probability in term of BCJR algorithm for exchange with a single channel decoder as priori information. Minimum kullback-leibler (MKL) framework is derived to calculate numerical channel estimation and extrinsic probability. In comparison with other similar receiver, simulation results demonstrate that the proposed solution achieves the desirable performance.
Illsoo SOHN Byong Ok LEE Kwang Bok LEE
Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
Xuewen LIAO Shihua ZHU Erlin ZENG
Multipath energy capture and inter-symbol interference (ISI) are two intractable problems in high-data-rate Ultra-wideband (UWB) systems. To tackle the problems and simplify the receiver, we propose an adaptive interference avoidance scheme based on Pre-RAKE combining technique. The symbol repetition period (SRP) is regarded a changeable parameter in an ordered set to avoid severe interference paths and guarantee high data-rate. The set is known to both the transmitter and receiver. The index of the selected SRP is then sent to the receiver to coordinate the transmitter and receiver. The SRP can be updated adaptively according to the variations of the channels. Both theoretical analysis and simulations show that the ISI is mitigated and the transmission rate is improved simultaneously compared to the constant SRP transmission scheme.
Masatsugu HIGASHINAKA Hiroshi KUBO Akihiro OKAZAKI Yasutaka OGAWA Takeo OHGANE Toshihiko NISHIMURA
This paper proposes a novel channel estimation method for iterative equalization in MIMO systems. The proposed method incorporates co-channel interference (CCI) cancellation in the channel estimator and the channel estimation is successively performed with respect to each stream. Accuracy of channel estimation holds the key to be successfully converged the iterative equalization and decoding process. Although the channel estimates can be re-estimated by means of LS (Least Square) channel estimation using tentative decisions obtained in the iterative process, its performance is severely limited in a MIMO system because of erroneous decisions and ill-conditioned channel estimation matrix. The proposed method can suppress the above effects by means of CCI cancellation and successive channel estimation. Computer simulation confirms that the proposed channel estimation method can accurately estimate the channel, and the receiver with iterative equalization and the proposed method achieves excellent decoding performance in a MIMO-SM system.
Yoshio KARASAWA Changarkame VANMANY
In order to evaluate the effect of Nakagami-Rice fading on Orthogonal Frequency Division Multiplex (OFDM) signal transmission when the delay profile exceeds the guard interval, a simple prediction model is developed by extending the Equivalent Transmission-Path (ETP) model for Rayleigh fading. The validity of the model is demonstrated by comparing the calculated values of BER to those obtained by computer simulation. Using the newly developed ETP-OFDM model, digital transmission characteristics of the OFDM signal in a multipath environment when the delay profile exceeds the guard interval are shown as a function of K factor, delay spread, guard interval and OFDM symbol period.
Tomofumi SAKAGUCHI Yukihiro KAMIYA Takeo FUJII Yasuo SUZUKI
Wireless ad hoc communications such as ad hoc networks have been attracting researchers' attention. They are expected to become a key technology for "ubiquitous" networking because of the ability to configure wireless links by nodes autonomously, without any centralized control facilities. Adaptive array antennas (AAA) have been expected to improve the network efficiency by taking advantage of its adaptive beamforming capability. However, it should be noted that AAA is not almighty. Its interference cancellation capability is limited by the degree-of-freedom (DOF) and the angular resolution as a function of the number of element antennas. Application of AAA without attending to these problems can degrade the efficiency of the network. Let us consider wireless ad hoc communication as a target application for AAA, taking advantage of AAA's interference cancellation capability. The low DOF and insufficient resolution will be crucial problems compared to other wireless systems, since there is no centralized facility to control the nodes to avoid interferences in such systems. A number of interferences might impinge on a node from any direction of arrival (DOA) without any timing control. In this paper, focusing on such limitations of AAA applied in ad hoc communications, we propose a new scheme, Forward Interference Avoidance (FIA), using AAA for ad hoc communications in order to avoid problems caused by the limitation of the AAA capability. It enables nodes to avoid interfering with other nodes so that it increases the number of co-existent wireless links. The performance improvement of ad hoc communications in terms of the number of co-existent links is investigated through computer simulations.
Keat Beng TOH Shin'ichi TACHIKAWA
This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and Matched Filter-Equalizer-RAKE (MF-EQZ-RAKE) combining scheme receiver system for Direct Sequence-Ultra Wideband (DS-UWB) multipath channel model. When binary code sequence such as M sequence is used, there is a possibility of generating extra Inter-Symbol Interference (ISI) in the UWB system. Therefore, it is quite a challenging task to collect the energy efficiently although RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of Inter-Symbol Interference (ISI) during high speed transmission of ultra short pulses in a multipath channel. The proposed system improves the system performance by improving the RAKE reception performance using RR sequence and suppressing the ISI effect with the equalizer. Simulation results verify that significant improvement can be obtained by the proposed system especially in UWB multipath channel models such as channel CM4 that suffered severe ISI effect.
Keat Beng TOH Shin'ichi TACHIKAWA
This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.
Hiroaki WATAHIKI Teruyuki MIYAJIMA
In block transmission systems, performance degrades due to inter-block interference (IBI) when there are multipaths with delays exceeding cyclic prefix (CP) length. An interesting technique to overcome this problem is an array antenna proposed by Hori et al., which restores the CP property by minimizing a cost function. However, its performance has not been theoretically cleared. In this letter, the performance of a method which minimizes the cost function under a unit norm constraint is analyzed. It is shown that the method can suppress IBI and its interference suppression capability depends on a certain parameter. The analytical result is verified through computer simulation.
In this paper, we investigate the performance of maximum ratio combining (MRC) in the presence of multiple cochannel interferences over a flat Rayleigh fading channel. Closed-form expressions of signal-to-interference-plus-noise ratio (SINR), outage probability, and average symbol error rate (SER) of quadrature amplitude modulation (QAM) with M-ary signaling are obtained for unequal-power interference-to-noise ratio (INR). We also provide an upper-bound for the average SER using moment generating function (MGF) of the SINR. Moreover, we quantify the array gain loss between pure MRC (MRC system in the absence of CCI) and MRC system in the presence of CCI. Finally, we verify our analytical results by numerical simulations.
When contact failure occurs in a connector in a coaxial HF signal transmission line, an electromagnetic field is radiated around the line. We have measured the electromagnetic field and examined the characteristics of such radiation. The results show that the radiation is related to the contact resistance and the symmetry of the distribution of contact points at the connector. When contact resistance is low, radiation is observed at resonant frequencies related to the length of the transmission line. If a connector has axially asymmetric contact points, its radiation is higher than that when the contact points are symmetric. We show that if contact points in a connector are axially symmetrical with resistance lower than 0.25 Ω, the electromagnetic interference caused by the connector contact failure is as low as the background noise.
Seung Su HAN Jongho PARK Tae-Jin LEE Hyun Gi AHN Kyunghun JANG
Some OFDMA-based wireless commuication systems, e.g., Wireless Broadband Internet (WiBro) or Worldwide interoperability for Microwave Access (WiMAX), support frequency reuse of 1 to maximize spectral efficiency. One of the efficient methods to reduce co-channel interference (CCI) caused by frequency reuse is fractional frequency reuse (FFR). In this paper, we propose and validate a novel frequency partitioning method and subcarrier assignment mechanism to improve system and individual capacity of mobile systems using FFR.
Supawan ANNANAB Tomonori TOBITA Tetsuki TANIGUCHI Yoshio KARASAWA
We propose an implementation of the tapped delay line adaptive array (TDLAA) at the base station for improving the BER performance of asynchronous multi-user mobile communication over fast fading channels using multiple antennas. The data of each user at the mobile station, which applies two transmit antennas, are encoded by Space Time Block Code (STBC). The proposed scheme transmits the pilot signal and information data in alternate time slots. We derive performance criteria for designing such a scheme under the assumption that the fading is classified as fast fading. We show that the proposed scheme can suppress co-channel interference (CCI) and defeat Doppler spread effectively.