The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] interference(854hit)

301-320hit(854hit)

  • On the ICI Mitigation in OFDM Systems by Using the Segment-Based QR Decomposition

    Yung-Yi WANG  Hsu-Jah HU  Yen-Lin CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:5
      Page(s):
    1878-1881

    In this study, a precoding scheme based on QR-decomposition is proposed for mitigating the inter-carrier-interference (ICI) in orthogonal-frequency-division-multiplexing (OFDM) systems. The proposed approach first subjects the ICI matrix to QR decomposition so that the ICI effect is transformed into its spectrally causal equivalent. With this causality, the precoding can then be conducted based on the resultant spectrally causal matrix. In addition, by using the stationary property of the ICI factors, in conjunction with zero padding, we implement the QR-based precoding in a segmentation manner which can significantly alleviate the computational complexity imposed by QR decomposition while eliminating ICI within each segment. This study also analyzes the residue interference power induced by the segmentation. The residue interference power is then accordingly used to determine the order of zero padding. Computer simulations support the validity of the proposed approach.

  • Resource Allocation for Interference Avoidance in OFDMA-TDD Based Femtocell Networks

    IlKwon CHO  Se-Jin KIM  Choong-Ho CHO  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:5
      Page(s):
    1886-1889

    In this letter, we propose a novel resource allocation scheme to enhance downlink system performance for orthogonal frequency division multiple access (OFDMA) and time division duplex (TDD) based femtocell networks. In the proposed scheme, the macro base station (mBS) and femto base stations (fBSs) service macro user equipments (mUEs) and femto user equipments (fUEs) in inner and outer zones in different periods to reduce interference substantially. Simulations show the proposed scheme outperforms femtocell networks with fractional frequency reuse (FFR) systems in terms of the system capacity and outage probability for mUEs and fUEs.

  • Impact of Femtocell Deployment on Existing Macrocells

    Seokhyun YOON  Joonyoung CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:5
      Page(s):
    1730-1737

    The impact of co-channel deployment of femtocells on existing macro-cellular systems is investigated considering the use of techniques to resolve the loud neighbor problem. There are several approaches to this aim, for example, femtocell power control, interference coordination, and opening access to femtocells. Of these, coordinated scheduling, including power control, and their impact will be the main focus of this work. In the context of 3GPP-LTE, we examine under various operational scenarios the performance in terms of the average and 5% worst user throughput, a useful measure of fairness among users, both for femto and macro cells. Although recent studies have shown that co-channel femtocell has a minor impact on the macrocell performance in average sense, a non-negligible percentage of users may lose their opportunity to get satisfactory data service and, hence, we focus more on the 5% worst users.

  • Performance Evaluation in Heterogeneous Networks Employing Time-Domain Inter-Cell Interference Coordination and Cell Range Expansion for LTE-Advanced Downlink

    Masashige SHIRAKABE  Akihito MORIMOTO  Nobuhiko MIKI  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1218-1229

    In Long-Term Evolution (LTE)-Advanced, heterogeneous networks where femtocells and picocells are overlaid onto macrocells are extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous network deployment, combined usage of inter-cell interference coordination (ICIC) and cell range expansion (CRE) is very effective in improving the system and cell-edge throughput. In this combined usage, the fraction of the sets of user equipment (UEs) connected to the picocells, which are controlled through CRE, and that connected to macrocells affect the gain from the ICIC. Therefore, this paper evaluates the throughput performance of different offset values for CRE and different amounts of protected resources for ICIC in picocell deployments in LTE-Advanced downlink. Simulation results (2–10 picocells and 30 UEs are located within 1 macrocell) assuming a full buffer traffic model show that when the CRE offset value is set between 8 to 20 dB, almost the same user throughput performance is obtained by allocating the appropriate resources to protect UEs that connect to the picocells. Furthermore, the appropriate resource ratio is derived based on the fraction of UEs connected to the picocells through CRE, the fraction of UEs connected to the macrocell, and the number of picocells under the simulation conditions.

  • Network Coordinated Opportunistic Beamforming in Downlink Cellular Networks

    Won-Yong SHIN  Bang Chul JUNG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:4
      Page(s):
    1393-1396

    We propose a network coordinated opportunistic beamforming (NC-OBF) protocol for downlink K-cell networks with M-antenna base stations (BSs). In the NC-OBF scheme, based on pseudo-randomly generated BF vectors, a user scheduling strategy is introduced, where each BS opportunistically selects a set of mobile stations (MSs) whose desired signals generate the minimum interference to the other MSs. Its performance is then analyzed in terms of degrees-of-freedom (DoFs). As our achievability result, it is shown that KM DoFs are achievable if the number N of MSs in a cell scales at least as SNRKM-1, where SNR denotes the received signal-to-noise ratio. Furthermore, by deriving the corresponding upper bound on the DoFs, it is shown that the NC-OBF scheme is DoF-optimal. Note that the proposed scheme does not require the global channel state information and dimension expansion, thereby resulting in easier implementation.

  • Distributed Spatial Interference Coordination for IEEE 802.11n Wireless Networks

    Rui CHEN  Changle LI  Jiandong LI  

     
    LETTER

      Vol:
    E95-B No:4
      Page(s):
    1297-1299

    The 802.11n networks with MIMO technique provide a spatial degree of freedom for dealing with co-channel interference. In this letter, our proposed spatial interference coordination scheme is achieved by distributed precoding for the downlink and distributed multi-user detection for the uplink. Simulation results validate the proposed scheme in terms of the downlink and uplink maximum achievable rates at each AP.

  • Exact Error Performance Analysis of Arbitrary 2-D Modulation OFDM Systems with Carrier Frequency Offset

    Jaeyoon LEE  Dongweon YOON  Hoon YOO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1439-1442

    In an orthogonal frequency division multiplexing (OFDM) system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide a closed-form expression to evaluate the exact error probabilities of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.

  • Design and Performance of Overlap FFT Filter-Bank for Dynamic Spectrum Access Applications

    Motohiro TANABE  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1249-1255

    An OFDMA-based (Orthogonal Frequency Division Multiple Access-based) channel access scheme for dynamic spectrum access has the drawbacks of large PAPR (Peak to Average Power Ratio) and large ACI (Adjacent Channel Interference). To solve these problems, a flexible channel access scheme using an overlap FFT filter-bank was proposed based on single carrier modulation for dynamic spectrum access. In order to apply the overlap FFT filter-bank for dynamic spectrum access, it is necessary to clarify the performance of the overlap FFT filter-bank according to the design parameters since its frequency characteristics are critical for dynamic spectrum access applications. This paper analyzes the overlap FFT filter-bank and evaluates its performance such as frequency characteristics and ACI performance according to the design parameters.

  • Investigation on Interference Coordination Employing Almost Blank Subframes in Heterogeneous Networks for LTE-Advanced Downlink

    Nobuhiko MIKI  Yuya SAITO  Masashige SHIRAKABE  Akihito MORIMOTO  Tetsushi ABE  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1208-1217

    This paper investigates the application of inter-cell interference coordination (ICIC) in heterogeneous networks for the LTE-Advanced downlink where picocells are overlaid onto macrocells. In LTE-Advanced, in order to perform ICIC, almost blank subframes (ABSs) are employed, where only the cell-specific reference signal (CRS) is transmitted to protect the subframes in the picocells from severe interference from the macrocells. Furthermore, multicast/broadcast over single-frequency network (MBSFN) subframes are employed to reduce the interference of the CRS on the data channel, although the control channel still suffers from interference from the CRS. When the cell range expansion (CRE), which offload the UEs from macrocells to picocells, is used to improve the system performance, the influence from the CRS increases. In order to assess the influence, the required CRE bias to improve the data channel is investigated based on a system-level simulation under various conditions such as the number of picocells, the protected subframe ratio, and the user distribution. The simulation results show that the cell-edge user throughput is improved with the CRE bias of more than 8 dB, employing ABSs. Furthermore, simulation results show that one dominant source of interference is observed for the sets of user equipment (UEs) connected to the picocells via CRE with such a bias value. Based on observation, the influence that the CRS has on the control channel, i.e., physical control format indicator channel (PCFICH), and physical downlink control channel (PDCCH) is investigated based on a link-level simulation combined with a system-level simulation. The simulation results show that protecting the PCFICH is very important compared to protecting the PDCCH, since the block error rate (BLER) performance of the PCFICH becomes worse than the required BLER of 10-3 to support various conditions, although the BLER performance of the PDCCH can exceed the required BLER of 10-2 by spanning the PDCCH over three OFDM symbols.

  • Performance Evaluation of an Option-Based Learning Algorithm in Multi-Car Elevator Systems

    Alex VALDIVIELSO CHIAN  Toshiyuki MIYAMOTO  

     
    LETTER-Concurrent Systems

      Vol:
    E95-A No:4
      Page(s):
    835-839

    In this letter, we present the evaluation of an option-based learning algorithm, developed to perform a conflict-free allocation of calls among cars in a multi-car elevator system. We evaluate its performance in terms of the service time, its flexibility in the task-allocation, and the load balancing.

  • An Enhanced Observed Time Difference of Arrival Based Positioning Method for 3GPP LTE System

    Kyung-Hoon WON  Jun-Hee JANG  Hyung-Jin CHOI  

     
    PAPER-Sensing

      Vol:
    E95-B No:3
      Page(s):
    961-971

    In 3GPP (3-rd Generation Partnership Project) LTE (Long Term Evolution) system, the use of PRS (Positioning Reference Signal) for OTDOA (Observed Time Difference of Arrival) based positioning method has been agreed. However, PRSs can be overlapped at the receiver side in synchronous network because the frequency shift pattern of PRS is decided by cell ID (Identity). Moreover, in asynchronous network, the loss of orthogonality between received PRSs generates continuous interferences. Even though autonomous muting can be applied to solve the interference problems in synchronous and asynchronous networks, the muting scheme degrades the overall positioning efficiency and requires additional network complexity. Therefore, in this paper, we propose novel OTDOA based positioning methods at the receiver side to improve positioning efficiency: cancellation method of serving PRS for synchronous network, TDORS (Time Domain Orthogonal Reference Signal) generation and useful CIR (Channel Impulse Response) selection methods for asynchronous network. We verified that the proposed methods can achieve an accurate estimation and stable operation without PRS muting.

  • Athermal Wavelength Filters toward Optical Interconnection to LSIs

    Yuki ATSUMI  Manabu ODA  Joonhyun KANG  Nobuhiko NISHIYAMA  Shigehisa ARAI  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    229-236

    Photonic integrated circuits (PICs) produced by large-scale integration (LSI) on Si platforms have been intensively researched. Since thermal diffusion from the LSI logic layer is a serious obstacle to realizing a Si-based optical integrated circuit, we have proposed and realized athermal wavelength filters using Si slot waveguides embedded with benzocyclobutene (BCB). First, the athermal conditions were theoretically investigated by controlling the waveguide and gap width of the slot waveguides. In order to introduce the calculated waveguide structures to wavelength filters, the propagation losses and bending losses of the Si slot waveguides were evaluated. The propagation losses were measured to be 5.6 and 5.3 dB/cm for slot waveguide widths of 500 and 700 nm, respectively. Finally, athermal wavelength filters, a ring resonator, and a Mach-Zhender interferometer (MZI) with a slot waveguide width of 700 nm were designed and fabricated. Further, a temperature coefficient of -0.9 pm/K for the operating wavelength was achieved with the athermal MZI.

  • Iterative Multi-Track ITI Canceller for Nonbinary-LDPC-Coded Two-Dimensional Magnetic Recording

    Masaaki FUJII  

     
    PAPER-Storage Technology

      Vol:
    E95-C No:1
      Page(s):
    163-171

    An iterative inter-track interference (ITI) cancelling scheme is described for multi-track signal detection in nonbinary (NB)-LDPC-coded two-dimensional magnetic recording. The multi-track iterative ITI canceller that we propose consists of multi-track soft interference cancellers (SICs), two-dimensional partial response (TDPR) filters, noise-predictive max-log-MAP detectors, and an NB-LDPC decoder. TDPR filters using an ITI-suppressing tap-weight vector mitigate ITI in the first iteration. Multi-track SICs and TDPR filters adjusted to the residual two-dimensional ISI signals efficiently detect multi-track signals in the latter iterations. The simulation results demonstrated that our proposed iterative multi-track ITI canceller achieves frame error rates close to those obtained in a non-ITI case in media-noise-dominant environments when the both-side off-track ratio is up to 50%.

  • Non-coherent Power Decomposition-Based Energy Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Bingxuan ZHAO  Shigeru SHIMAMOTO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    234-242

    As the fundamental component of dynamic spectrum access, implementing spectrum sensing is one of the most important goals in cognitive radio networks due to its key functions of protecting licensed primary users from harmful interference and identifying spectrum holes for the improvement of spectrum utilization. However, its performance is generally compromised by the interference from adjacent primary channels. To cope with such interference and improve detection performance, this paper proposes a non-coherent power decomposition-based energy detection method for cooperative spectrum sensing. Due to its use of power decomposition, interference cancellation can be applied in energy detection. The proposed power decomposition does not require any prior knowledge of the primary signals. The power detection with its interference cancellation can be implemented indirectly by solving a non-homogeneous linear equation set with a coefficient matrix that involves only the distances between primary transmitters and cognitive secondary users (SUs). The optimal number of SUs for sensing a single channel and the number of channels that can be sensed simultaneously are also derived. The simulation results show that the proposed method is able to cope with the expected interference variation and achieve higher probability of detection and lower probability of false alarm than the conventional method in both hard combining and soft combining scenarios.

  • Adaptive and Iterative ITI Canceller for Inter-Track Asynchronous Shingled Write Magnetic Recording

    Masaaki FUJII  

     
    PAPER-Storage Technology

      Vol:
    E95-C No:1
      Page(s):
    155-162

    An adaptive and iterative intertrack-interference (ITI) cancelling scheme is described for multi-track signal detection in inter-track asynchronous shingled write magnetic recording. There is write-clock frequency drift in asynchronous recording systems. Read-back signals obtained with a wide read head scanning narrow tracks thus suffer from not only intersymbol interference (ISI) but also time-variant ITI. To efficiently cope with static ISI and time-variant ITI, multi-track soft interference cancellers and two-dimensional partial-response filters are incorporated based on per-survivor processing into each trellis state defined in a one-dimensional/two-dimensional trellis-switching max-log-MAP detector. In addition, the computational complexity can be reduced based on channel interpolation and intermittent TDPR-filter control by allowing small degradation in signal detection. Computer simulation results in media-noise-dominant environments demonstrate that the proposed adaptive and iterative ITI canceller achieves bit error rates close to those obtained in a non-ITI case when the read-head off-track ratio is up to 50% in write-clock frequency difference of 0.02%.

  • Protecting Primary Users in Cognitive Radio Networks with Effective Capacity Loss Constraint

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    349-353

    Cognitive radio (CR) in spectrum sharing mode allows secondary user (SU) to share the same spectrum simultaneously with primary user (PU), as long as the former guarantees no harmful interference is caused to the latter. This letter proposes a new type of constraint to protect the PU systems that are carrying delay-sensitive applications, namely the PU effective capacity loss constraint, which sets an upper bound on the maximum effective capacity loss of the PU due to the SU transmission. In addition, the PU effective capacity loss constraint is approximately transformed to the interference temperature (power) constraint, to make it easier to be implemented. As an example, we obtain a closed form expression of the SU effective capacity under the approximated peak interference power constraint and the results of simulations validate the proposed PU protection criterion.

  • A Least Bit Error Rate Adaptive Array for MultiLevel Modulations

    Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    69-76

    This paper proposes an adaptive algorithm for adaptive arrays that minimizes the bit error rate (BER) of the array output signals in radio communication systems with the use of multilevel modulation signals. In particular, amplitude phase shift keying (APSK) is used as one type of multilevel modulations in this paper. Simultaneous non-linear equations that are satisfied by the optimum weight vector of the proposed algorithm are derived and used for theoretical analyze of the performance of the adaptive array based on the proposed algorithm. As a result of the theoretical analysis, it can be shown that the proposed adaptive array improves the carrier to interference ratio of the array output signal without taking advantage of the nulls. Furthermore, it is confirmed that the result of the theoretical analysis agrees with that of computer simulation. When the number of the received antenna is less than that of the received signals, the adaptive array based on the proposed algorithm is verified to achieve much better performance then that based on the least mean square (LMS) algorithm.

  • Performance of Interference Rejection Combining Receiver to Suppress Inter-Cell Interference in LTE-Advanced Downlink

    Yusuke OHWATARI  Nobuhiko MIKI  Takahiro ASAI  Tetsushi ABE  Hidekazu TAOKA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3362-3369

    The interference rejection combining (IRC) receiver, which can suppress inter-cell interference, is effective in improving the cell-edge user throughput. The IRC receiver is typically based on the minimum mean square error (MMSE) criteria, which requires highly accurate channel estimation and covariance matrix estimation that includes the inter-cell interference. This paper investigates the gain from the IRC receiver in terms of the downlink user throughput performance in a multi-cell environment. In the evaluation, to assess the actual gain, the inter-cell interference signals including reference signals from the surrounding 56 cells are generated in the same way as the desired signals, and the channel propagation from all of the cells is explicitly taken into account considering pathloss, shadowing, and multipath fading. The results of simulations that assume the inter-site distance of 500 m, the spatial correlation at the transmitter and the receiver of 0.5, and the numbers of transmitter and receiver antennas of 2 and 2, respectively, show that the IRC receiver improves the cell-edge user throughput (defined as the 5% value in the cumulative distribution function) by approximately 15% compared to the simplified MMSE receiver that approximates the inter-cell interference as AWGN, at the cost of a drop in the average user throughput due to less accurate channel and covariance matrices. Furthermore, we consider dynamic switching between the IRC receiver and the simplified MMSE receiver according to the number of streams and modulation and coding scheme levels. The results show that with dynamic switching, both the cell-edge throughput and average user throughput are improved to the same level as that for the IRC receiver and the simplified MMSE receiver, respectively. Therefore, the best performance can be achieved by employing the dynamic switching in all throughput regions.

  • Degrees-of-Freedom Based on Interference Alignment with Imperfect Channel Knowledge

    Won-Yong SHIN  Muryong KIM  Hyoseok YI  Ajung KIM  Bang Chul JUNG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:12
      Page(s):
    3579-3582

    The impact and benefits of channel state information (CSI) are analyzed in terms of degrees-of-freedom (DoFs) in a K-user interference network operating over time-selective channels, where the error variance of CSI estimation is assumed to scale with an exponent of the received signal-to-noise ratio (SNR). The original interference alignment (IA) scheme is used with a slight modification in the network. Then, it is shown that the DoFs promised by the original IA can be fully achieved under the condition that the CSI quality order, represented as a function of the error variance and the SNR, is greater than or equal to 1. Our result is extended to the case where the number of communication pairs, K, scales with the SNR, i.e., infinite K scenario, by introducing the user scaling order. As a result, this letter provides vital information to the system designer in terms of allocating training resources for channel estimation in practical cellular environments using IA.

  • Dynamic Cooperative Silencing Control for Intercell Interference Control in Heterogeneous Cellular Networks

    Wonjong NOH  

     
    LETTER

      Vol:
    E94-B No:12
      Page(s):
    3370-3373

    In heterogeneous cellular networks (HCN), which consists of macrocells and picocells, efficient interference management schemes between macrocells and picocells are crucial to the overall system performance. We propose a dynamic cooperative silencing (DCS) scheme for intercell interference control (ICIC). It is a low-complexity, low-feedback and distributed algorithm using only strongly interfered neighboring user information. A system simulation shows that the system performance and in particular the cell-edge throughput is significantly increased with the proposed silencing scheme.

301-320hit(854hit)