The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ions(1385hit)

1221-1240hit(1385hit)

  • Trends of Fiber-Optic Microcellular Radio Communication Networks

    Shozo KOMAKI  Eiichi OGAWA  

     
    INVITED PAPER-System Applications

      Vol:
    E79-C No:1
      Page(s):
    98-104

    Exploitation of air interfaces for mobile communications is rapidly increasing because of diversified service demands, technology trends and radio propagation conditions. This paper summarizes the radio and optic interaction devices and systems that can solve the future problems resulting from spreading demands in mobile multimedia communications. The concept of the Virtual Free Space Network (Radio Highway Network) is proposed for universal mobile access networks that can support any mobile service or radio air-interface. As one example of the proposed network, the optical TDMA network for radio is analyzed and results of some theoretical calculations are shown.

  • Footprints of Storms on the Sea in the JERS-1 SAR Image

    Toshio IGUCHI  David ATLAS  Ken'ichi OKAMOTO  Akimasa SUMI  

     
    PAPER

      Vol:
    E78-B No:12
      Page(s):
    1580-1584

    SEASAT synthetic aperture radar (SAR) echoes from the sea show beautiful images of storms over the ocean. However, the mechanisms by which such storm images are created have not yet been revealed very well. The core of these images is usually an echo-free hole which is attributed to the damping of the radar-detectable short gravity waves by the intense rain in the storm core. The bright area surrounding the core is believed to be caused by strong winds diverging from the downdraft which is collocated with the intense rain. The outer boundary of the bright area has been found to be associated with the classical gust front. During the Tropical Ocean Global Atmosphere/Coupled Ocean-Atmosphere Response Experiment (TOGA/COARE), continuous observations of rain by shipborne radars were carried out. One image of JERS-1 SAR taken in this period contains storms that were within the observation area of a shipborne radar. The SAR image and the rain-radar image are compared. Even though the signal-to-noise ratio of the SAR image is very low, there is good correspondence between heavy rain areas and some of the dark areas in the SAR image. The boundary of a rain-induced dark area is found to correspond approximately to the radar reflectivity factor (Z-factor) of 35dBZ or 5.5mm/h of rain.

  • Polarimetric Enhancement in Radar Channel Imagery

    Yoshio YAMAGUCHI  Yuji TAKAYANAGI  Wolfgang-M. BOERNER  Hyo Joon EOM  Masakazu SENGOKU  

     
    PAPER

      Vol:
    E78-B No:12
      Page(s):
    1571-1579

    This paper applied the polarimetric filtering principle to Synthetic Aperture Radar (SAR) image sets in three possible polarimetric radar channels and compared the resultant imagery. The polarimetric radar channels in consideration here are Co-Pol, Cross (X)-pol, and Matched (M)-pol channels. Each channel has its own polarimetric characteristics for imaging. Using the formulation of the contrast enhancement factors based on the Stokes vector formalism, polarimetric enhanced images for three channels are shown using NASA JPL DC-8 AIRSAR data sets (CC0045L, Bonanza Creek, AK/USA). It is shown that the optimally enhanced Co- and X-Pol channel images play a decisive role in imaging in a complex featured background.

  • Thermal Noise in Silicon Bipolar Transistors and Circuits for Low-Current Operation--Part : Compact Device Model--

    Yevgeny V. MAMONTOV  Magnus WILLANDER  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:12
      Page(s):
    1761-1772

    This work deals with thermal-noise modeling for silicon vertical bipolar junction transistors (BJTs) and relevant integrated circuits (ICs) operating at low currents. The two-junction BJT compact model is consistently derived from the thermal-noise generalization of the Shockley semiconductor equations developed in work which treats thermal noise as the noise associated with carrier velocity fluctuations. This model describes BJT with the Itô non-linear stochastic-differential-equation (SDE) system and is suitable for large-signal large-fluctuation analysis. It is shown that thermal noise in silicon p-n-junction diode contributes to "microplasma" noise. The above model opens way for a consistent-modeling-based design/optimization of bipolar device noise performance with the help of theory of Itô's SDEs.

  • Symmetrical Properties and Bifurcations of the Periodic Solutions for a Hybridly Coupled Oscillator

    Olivier PAPY  Hiroshi KAWAKAMI  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:12
      Page(s):
    1816-1821

    In this paper we study the bifurcations of the periodic solutions induced by the symmetrical properties of a system of hybridly coupled oscillators of the Rayleigh type. By analogy with the results concerning with the equilibria, we classify the periodic solutions according to their spatial and temporal symmetries. We discuss the possible bifurcations of each type of periodic solution. Finally we analyze the phase portraits of the system when the parameters vary.

  • JERS-1 SAR Image Analysis by Wavelet Transform

    Yoshio YAMAGUCHI  Takeshi NAGAI  Hiroyoshi YAMADA  

     
    LETTER

      Vol:
    E78-B No:12
      Page(s):
    1617-1621

    The wavelet transform provides information both in the spatial domain and in the frequency domain because of its inherent nature of space-frequency analysis. This paper presents a classification result of synthetic aperture radar image obtained by JERS-1 based on the discrete wavelet transform. This paper points out that the wavelet analysis has yielded a fine result in texture classification compared to a conventional method with less computation time.

  • An Object-Oriented Approach to Temporal Multimedia Data Modeling

    Yoshifumi MASUNAGA  

     
    PAPER-Model

      Vol:
    E78-D No:11
      Page(s):
    1477-1487

    This paper discusses an object-oriented approach to temporal multimedia data modeling in OMEGA; a multimedia database management under development at the University of Library and Information Science. An object-orientated approach is necessary to integrate various types of heterogeneous multimedia data, but it has become clear that current object-oriented data models are not sufficient to represent multimedia data, particularly when they are temporal. For instance, the current object-oriented data models cannot describe objects whose attribute values change time-dependently. Also, they cannot represent temporal relationships among temporal multimedia objects. We characterize temporal objects as instances of a subclass of class TimeInterval with the temporal attributes and the temporal relationships. This temporal multimedia data model is designed upward compatible with the ODMG-93 standard object model. To organize a temporal multimedia database, a five temporal axes model for representing temporal multimedia objects is also introduced. The five temporal axes--an absolute, an internal, a quasi-, a physical, and a presentation time axis--are necessary to describe time-dependent properties of multimedia objects in modeling, implementing and use. A concrete example of this organization method is also illustrated.

  • An Efficient State Space Search for the Synthesis of Asynchronous Circuits by Subspace Construction

    Toshiyuki MIYAMOTO  Dong-Ik LEE  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E78-A No:11
      Page(s):
    1504-1510

    In this paper, an approach to derive a logic function of asynchronous circuits from a graph-based model called Signal Transition Graphs (STG) is discussed. STG's are Petri nets, whose transitions are interpreted as a signal transition on the circuit inputs or gate outputs, and its marking represents a binary state of the circuit. STG's can represent a behavior of circuit, to derive logic functions, however, the reachability graph should be constructed. In the verification of STG's some method based on Occurrence nets (OCN) and its prefix, called unfolding, has been proposed. OCN's can represent both causality and concurrency between two nodes by net structure. In this paper, we propose a method to derive a logic function by generating substate space of a given STG using the structural properties of OCN. The proposed method can be seem as a parallel algorithm for deriving a logic function.

  • Linear Systems Analysis of Blood Clotting System

    Hirohumi HIRAYAMA  Kiyono YOSHII  Hidetomo OJIMA  Norikazu KAWAI  Shintaro GOTOH  Yuzo FUKUYAMA  

     
    LETTER-Systems and Control

      Vol:
    E78-A No:10
      Page(s):
    1419-1431

    The controllability and the stability of the blood clotting system are examined with the linear system analysis. The dynamic behavior of the clotting system consisting of a cascade of ten proteolytic reactions of the clotting factors with multiple positive feed back and feed forward loops is represented by the rate equations in a system of non linear ordinary differential equations with 35 variables. The time courses of concentration change in every factor are revealed by numerical integration of the rate equations. Linearization of the rate equations based on the dynamic behavior of the chemical species relevant to the nonlinear terms leads to the linear systems analysis of the clotting system to clarify the essential features of blood coagulation. It follows from the analysis that the clotting system is uncontrollable regardless of changes in any system parameters and control input and that all the chemical species of the system are uncontrollable so that the sequential reactions in the cascade proceed irreversibly, once they are activated. More over by the analysis of the eigen values, the clotting reaction as a total system was shown to be unstable which was insensitive to changes in the system parameters. These characteristic natures of clotting system must be derived in the sequential cascade reaction pattern and the inherent multiple positive feed back and feed forward regulation.

  • Outage Probability Analysis for Cellular Mobile Radio Systems Subject to Nakagami Fading and Shadowing

    C. TELLAMBURA  Vijay K. BHARGAVA  

     
    PAPER-Mobile Communication

      Vol:
    E78-B No:10
      Page(s):
    1416-1423

    Empirical studies confirm that the received radio signals in certain cellular systems are well modelled by Nakagami statistics. Therefore, performing relevant systems studies can be potentially useful to a system designer. A very useful statistical measure for characterizing the performance of a mobile radio system is the probability of outage, which describes the fraction of time that the signal-to-interference ratio (SIR) drops below some threshold. A more refined criterion for the outage is the failure to simultaneously obtain a sufficient SIR and a minimum power level for the desired signal. Thus, we derive new expressions for the probability of outage where a mobile unit receives a Nakagami desired signal and multiple, independent, cochannel Nakagami interferers. A salient feature of our results is that, unlike some previous studies, the outage expressions do not restrict the Nakagami fading parameter, m, to strictly integer values. Furthermore, since the received signals in mobile radio also experience log-normal shadowing, we analyze the case where the received signals are modelled by a composite of Nakagami and log-normal distributions. Outage probabilities are computed and graphically presented for several cases. The effect of specifying a minimum signal requirement for adequate reception is found to introduce a floor on the outage probability. It is also found that shadowing in macrocellular systems severely degrades the desired quality of service by increasing the reuse distance necessary for a given outage level.

  • Statistical Analysis of a Simple Constrained High-Order Yule-Walker Tone Frequency Estimator

    Yegui XIAO  Yoshiaki TADOKORO  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:10
      Page(s):
    1415-1418

    In this work, a statistical analysis is performed for a simple constrained high-order Yule-Walker (YW) tone frequency estimator obtained from the first equation of the constrained high-order YW equations. Explicit expressions for its estimation bias and variance are efficiently derived by virtue of a Taylor series expansion technique. Especially, being explicit in terms of frequency, data length and Signal-to-Noise Ratio (SNR) value, the resulting bias expression can not be obtained by using the asymptotic analyses used for the parameter estimation methods. The obtained expressions are compared with their counterparts of the Pisarenko tone frequency estimator. Simulations are performed to support the theoretical results.

  • A Representation Method of the Convergence Characteristic of the LMS Algorithm Using Tap-Input Vectors

    Kiyoshi NISHIKAWA  Hitoshi KIYA  

     
    PAPER-Digital Signal Processing

      Vol:
    E78-A No:10
      Page(s):
    1362-1368

    The main purpose of this paper is to give a new representation method of the convergence characteristics of the LMS algorithm using tap-input vectors. The described representation method is an extended version of the interpretation method based on the orthogonal projection. Using this new representation, we can express the convergence characteristics in terms of tap-input vectors instead of the eigenvalues of the input signal. From this representation, we consider a general method for improving the convergence speed.

  • On the Number of Solutions of a Class of Nonlinear Equations Related to Neural Networks with Tapered Connections

    Tetsuo NISHI  Norikazu TAKAHASHI  

     
    PAPER

      Vol:
    E78-A No:10
      Page(s):
    1299-1305

    The number of solutions of a nonlinear equation x = sgn(Wx) is discussed. The equation is derived for the determination of equilibrium points of a kind of Hopfield neural networks. We impose some conditions on W. The conditions correspond to the case where a Hopfield neural network has n neurons arranged on a ring, each neuron has connections only from k preceding neurons and the magnitude of k connections decrease as the distance between two neurons increases. We show that the maximum number of solutions for the above case is extremely few and is independent of the number of neurons, n, if k is less than or equal to 4. We also show that the number of solutions generally increases exponentially with n by considering the case where k = n-1.

  • Surface Potential Method in the Wave Scattering from Localized Inhomogeneities of a Planar Dielectric Waveguide

    Alexander G. YAROVOY  

     
    PAPER

      Vol:
    E78-C No:10
      Page(s):
    1440-1446

    In the paper a problem of wave scattering from a local penetrable inhomogeneity inside a planar dielectric waveguide is studied. The surface potentials method is applied for the problem and the set of systems of BIE is obtained and analyzed from the view-point of their numerical solution. The effective numerical algorithm based on the Nyström method is proposed. The equations for a scattering diagram and mode conversion coefficients are derived.

  • On Chaotic Synchronization and Secure Communications

    Ljupco M. KOCAREV  Toni D. STOJANOVSKI  

     
    PAPER

      Vol:
    E78-A No:9
      Page(s):
    1142-1147

    In this paper we present a system for secure communications based on chaos synchronization. Unlike the existing systems for communication via chaotic synchronization, our system extracts the information at the receiver without error. A possibility for secure communications using Lorenz system is given. A practical algorithm for secret-key cryptography is suggested and is evaluated through statistical tests that have not shown any weakness. Furthermore, the algorithm is extremely simple for implementation in a program.

  • Image Decomposition by Answer-in-Weights Neural Network

    Iren VALOVA  Keisuke KAMEYAMA  Yukio KOSUGI  

     
    LETTER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:9
      Page(s):
    1221-1224

    We propose an algorithm for image decomposition based on Hadamard functions, realized by answer-in-weights neural network, which has simple architecture and is explored with steepest decent method. This scheme saves memory consumption and it converges fast. Simulations with least mean square (LMS) and absolute mean (AM) errors on a 128128 image converge within 30 training epochs.

  • Bifurcation Analysis of Nonlinear Resistive Circuits by Curve Tracing Method

    Lingge JIANG  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:9
      Page(s):
    1225-1232

    In this paper, we discuss computational methods for obtaining the bifurcation points and the branch directions at branching points of solution curves for the nonlinear resistive circuits. There are many kinds of the bifurcation points such as limit point, branch point and isolated point. At these points, the Jacobian matrix of circuit equation becomes singular so that we cannot directly apply the usual numerical techniques such as Newton-Raphson method. Therefore, we propose a simple modification technique such that the Newton-Raphson method can be also applied to the modified equations. On the other hand, a curve tracing algorithm can continuously trace the solution curves having the limit points and/or branching points. In this case, we can see whether the curve has passed through a bifurcation point or not by checking the sign of determinant of the Jacobian matrix. We also propose two different methods for calculating the directions of branches at branching point. Combining these algorithms, complicated solution curves will be easily traced by the curve tracing method. We show the example of a Hopfield network in Sect.5.

  • Advanced Wireless Communication Technologies for Achieving High-Speed Mobile Radios

    Norihiko MORINAGA  

     
    INVITED PAPER

      Vol:
    E78-B No:8
      Page(s):
    1089-1094

    This paper discusses advanced wireless communication technologies for achieving future high-speed mobile radios. Mainly, five technical fields are considered, that is, multi-level modulation for transmitting high-capacity information signal, advanced adaptive wireless system flexibly changing modulation level, symbol rate and traffic according to fading conditions, adaptive multicarrier system transmitting multimedia signals by changing the number of carrier according to the capacity of the signals, new CDMA techniques for mapping different bit rate services onto the same allocated bandwidth at the same time, and optical-linked microcellular communication system with millimeter wave air interface.

  • Distributed Measurement-Based Quasi-Fixed Frequency Assignment for TDMA Personal Communications Systems

    Matthew M.-L. CHENG  Justin C.-I. CHUANG  

     
    PAPER

      Vol:
    E78-B No:8
      Page(s):
    1179-1186

    The distributed measurement-based quasi-fixed frequency assignment (also known as quasi-static adaptive frequency assignment-QSAFA) methodology is a practical solution for frequency assignment in the emerging TDMA personal communications networks (PCN/PCS). Five different QSAFA algorithms are studied in this paper under different interference threshold settings. It is found that a simple aggressive algorithm without using a threshold (LIA-Least Interference Algorithm) performs the best under the conditions studied. The performance of this algorithm is also justified by the theoretical proof presented at the end of this paper.

  • Two-Tier Paging and Its Performance Analysis for Network-based Distributed Shared Memory Systems

    Chi-Jiunn JOU  Hasan S. ALKHATIB  Qiang LI  

     
    PAPER-Computer Networks

      Vol:
    E78-D No:8
      Page(s):
    1021-1031

    Distributed computing over a network of workstations continues to be an illusive goal. Its main obstacle is the delay penalty due to network protocol and OS overhead. We present in this paper a low level hardware supported scheme for managing distributed shared memory (DSM), as an underlying paradigm for distributed computing. The proposed DSM is novel in that it employs a two-tier paging scheme that reduces the probability of false sharing and facilitates an efficient hardware implementation. The scheme employs a standard OS page and divides it into fixed smaller memory units called paragraphs, similar to cache lines. This scheme manages the shared data regions only, while other regions are handled by the OS in the standard manner without modification. A hardware extension of a traditional MMU, namely Distributed MMU or DMMU, is introduced to support the DSM. Shared memory coherency is maintained through a write-invalidate protocol. An analytical model is built to evaluate the system sensitivity to various parameters and to assess its performance.

1221-1240hit(1385hit)