The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] joint(179hit)

61-80hit(179hit)

  • Experimental Investigation of Joint Decoding in Overloaded MIMO-OFDM System

    Tatsuro YABE  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:12
      Page(s):
    3101-3107

    This paper presents a joint decoding scheme for the overloaded multiple input multiple output (MIMO)-orthogonal frequency division multiplexing (OFDM) system. In the overloaded MIMO system, the number of receive antenna elements is less than that of transmit antenna elements. It has been shown that under the overloaded condition the performance of joint detection deteriorates while diversity reduces the amount of performance degradation caused by signal multiplexing. Thus, this paper proposes a maximum likelihood joint decoding scheme of block coded signals in the overloaded MIMO-OFDM system. The performance of joint decoding over Rayleigh fading channels is evaluated through simulation and experiments. The simulation shows that the diversity through block coding prevents any performance degradation in the joint decoding of 2 Hamming coded signal streams. However, there are differences between numerical results obtained through computer simulation and experiments owing to channel estimation errors.

  • Nested Transmit Diversity Based on a Joint Network-Channel Coding

    Koji ISHII  Koji ISHIBASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2261-2269

    In order to obtain higher diversity gain, the use of additional resources such as time, frequency, and/or antennas are necessary. The aim of this study is to achieve adequate temporal diversity gain without needing additional resources beyond decoding delay and decoding complexity. If the channel state information (CSI) is not available at the transmitter side, the transmitter sends information at a given constant transmission rate while the channel capacity varies according to the channel state. If the instantaneous channel capacity is greater than the given transmission rate, the system can successfully transmit information but it does not exploit the entire available channel capacity. We focus on this extra channel capacity to transmit other information based on a joint network-channel coding in order to obtain higher diversity and coding gains. This paper provides the basic concept of the transmit diversity with the joint network-channel coding and investigates its performances in terms of outage probability, additional decoding delay and complexity, and frame-error rate (FER).

  • On the Study of a Novel Decision Feedback Equalizer with Block Delay Detection for Joint Transceiver Optimization

    Chun-Hsien WU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E96-B No:3
      Page(s):
    737-748

    This paper presents a novel decision feedback equalizer (DFE) with block delay detection for the joint transceiver design that uses channel state information (CSI). The block delay detection in the proposed DFE offers a degree of freedom for optimizing the precoder of the transmitter, provided the transmission power is constrained. In the proposed DFE, the feedforward matrix is devised to enable a block-based equalizer that can be cooperated with an intrablock decision feedback equalizer for suppressing the intersymbol interference (ISI) for the transmitted block with a certain block delay. In this design, the interblock interference (IBI) for the delay block is eliminated in advance by applying the recently developed oblique projection framework to the implementation of the feedforward matrix. With knowledge of full CSI, the block delay and the associated block-based precoder are jointly designed such that the average bit-error-rate (BER) is minimized, subject to the transmission power constraint. Separate algorithms are derived for directly determining the BER-minimized block delays for intrablock minimum mean-squared error (MMSE) and zero-forcing (ZF) equalization criteria. Theoretical derivations indicate that the proposed MMSE design simultaneously maximize the Gaussian mutual information of a transceiver, even under the cases of existing IBI. Simulation results validate the proposed DFE for devising an optimum transceiver with CSI, and show the superior BER performance of the optimized transceiver using proposed DFE. Relying on analytic results and simulation cases also builds a sub-optimum MMSE design of the proposed DFE using the BER-minimized block delay for ZF criterion, which exhibits almost identical BER performance as the proposed MMSE design in most of the signal-to-noise ratio (SNR) range.

  • Joint MMSE Design of Relay and Destination in Two-Hop MIMO Multi-Relay Networks

    Youhua FU  Wei-Ping ZHU  Chen LIU  Feng LU  Hua-An ZHAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:3
      Page(s):
    836-846

    This paper presents a joint linear processing scheme for two-hop and half-duplex distributed amplify-and-forward (AF) relaying networks with one source, one destination and multiple relays, each having multiple antennas. By using the minimum mean-square error (MMSE) criterion and the Wiener filter principle, the joint relay and destination design with perfect channel state information (CSI) is first formulated as an optimization problem with respect to the relay precoding matrix under the constraint of a total relay transmit power. The constrained optimization with an objective to design the relay block-diagonal matrix is then simplified to an equivalent problem with scalar optimization variables. Next, it is revealed that the scalar-version optimization is convex when the total relay power or the second-hop SNR (signal to noise ratio) is above a certain threshold. The underlying optimization problem, which is non-convex in general, is solved by complementary geometric programming (CGP). The proposed joint relay and destination design with perfect CSI is also extended for practical systems where only the channel mean and covariance matrix are available, leading to a robust processing scheme. Finally, Monte Carlo simulations are undertaken to demonstrate the superior MSE (mean-square error) and SER (symbol error rate) performances of the proposed scheme over the existing relaying method in the case of relatively large second-hop SNR.

  • A Novel Low-Complexity Channel Estimation Approach for Single Carrier MIMO Frequency Selective Channels

    Suyue LI  Jian XIONG  Lin GUI  Youyun XU  Baoyu ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    233-241

    A simple yet effective time domain correlation channel estimation method is proposed for multiple-input multiple-output (MIMO) systems over dispersive channels. It is known that the inherent co-channel interference (CCI) and inter-symbol interference (ISI) coexist when the signals propagate through MIMO frequency selective channels, which renders the MIMO channel estimation intractable. By elaborately devising the quasi-orthogonal training sequences between multiple antennas which have constant autocorrelation property with different cyclic shifts in the time domain, the interferences induced by ISI and CCI can be simultaneously maintained at a constant and identical value under quasi-static channels. As a consequence, it is advisable to implement the joint ISI and CCI cancelation by solving the constructed linear equation on the basis of the correlation output with optional correlation window. Finally, a general and simplified closed-form expression of the estimated channel impulse response can be acquired without matrix inversion. Additionally, the layered space-time (LST) minimum mean square error (MMSE) (LST-MMSE) frequency domain equalization is briefly described. We also provide some meaningful discussions on the beginning index of the variable correlation window and on the cyclic shift number of m-sequence of other antennas relative to the first antenna. Simulation results demonstrate that the proposed channel estimation approach apparently outperforms the existing schemes with a remarkable reduction in computational complexity.

  • Normalized Joint Mutual Information Measure for Ground Truth Based Segmentation Evaluation

    Xue BAI  Yibiao ZHAO  Siwei LUO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:10
      Page(s):
    2581-2584

    Ground truth based image segmentation evaluation paradigm plays an important role in objective evaluation of segmentation algorithms. So far, many evaluation methods in terms of comparing clusterings in machine learning field have been developed. However, most traditional pairwise similarity measures, which only compare a machine generated clustering to a “true” clustering, have their limitations in some cases, e.g. when multiple ground truths are available for the same image. In this letter, we propose utilizing an information theoretic measure, named NJMI (Normalized Joint Mutual Information), to handle the situations which the pairwise measures can not deal with. We illustrate the effectiveness of NJMI for both unsupervised and supervised segmentation evaluation.

  • Optimum Linear Precoding Design for Non-Regenerative MIMO Relay System with Direct Link

    Fan LIU  Hongbo XU  Jun LI  Hongxing XIA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:9
      Page(s):
    2878-2883

    This paper designs the closed-form precoding matrices for non-regenerative MIMO relay system with the direct link. A multiple power constrained non-convex optimization problem is formulated by using the minimum-mean-squared error (MMSE) criterion. We decompose the original problem into two sub-problems. The relay transceiver Wiener filter structure is first rigorously derived, then the source transmit and destination receive matrices are jointly designed by solving an equivalent dual problem. Through our proposed joint iterative algorithm, the closed-form solutions can be finally obtained. The effectiveness of our proposed scheme is validated by simulations with comparison to some of the existing schemes.

  • Sequence-Based Pronunciation Variation Modeling for Spontaneous ASR Using a Noisy Channel Approach

    Hansjorg HOFMANN  Sakriani SAKTI  Chiori HORI  Hideki KASHIOKA  Satoshi NAKAMURA  Wolfgang MINKER  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:8
      Page(s):
    2084-2093

    The performance of English automatic speech recognition systems decreases when recognizing spontaneous speech mainly due to multiple pronunciation variants in the utterances. Previous approaches address this problem by modeling the alteration of the pronunciation on a phoneme to phoneme level. However, the phonetic transformation effects induced by the pronunciation of the whole sentence have not yet been considered. In this article, the sequence-based pronunciation variation is modeled using a noisy channel approach where the spontaneous phoneme sequence is considered as a “noisy” string and the goal is to recover the “clean” string of the word sequence. Hereby, the whole word sequence and its effect on the alternation of the phonemes will be taken into consideration. Moreover, the system not only learns the phoneme transformation but also the mapping from the phoneme to the word directly. In this study, first the phonemes will be recognized with the present recognition system and afterwards the pronunciation variation model based on the noisy channel approach will map from the phoneme to the word level. Two well-known natural language processing approaches are adopted and derived from the noisy channel model theory: Joint-sequence models and statistical machine translation. Both of them are applied and various experiments are conducted using microphone and telephone of spontaneous speech.

  • Position-Based k-Disjoint Path Routing for Reliable Data Gathering in Wireless Sensor Networks

    Jang Woon BAEK  Young Jin NAM  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2658-2660

    This paper proposes a novel routing algorithm that constructs position-based k-disjoint paths to realize greater resiliency to patterned failure. The proposed algorithm constructs k-disjoint paths that are spatially distributed by using the hop-count based positioning system. Simulation results reveal that the proposed algorithm is more resilient to patterned failure than other routing algorithms, while it has low power consumption and small delay.

  • Joint Symbol Timing and Carrier Frequency Offset Estimation for Mobile-WiMAX

    Yong-An JUNG  Young-Hwan YOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:5
      Page(s):
    986-989

    This letter proposes two efficient schemes for the joint estimation of symbol timing offset (STO) and carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) based IEEE 802.16e systems. Avoiding the effects of inter symbol interference (ISI) over delay spread by the multipath fading channel is a primary purpose in the letter. To do this, the ISI-corrupted CP is excluded when a correlation function is devised for both schemes, achieving the improved performance. To demonstrate the efficiency of the proposed methods, the performance is compared with the conventional method and is evaluated by the mean square error (MSE), acquisition range of CFO, and complexity comparison.

  • Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    Ji WANG  Yuanzhi CHENG  Yili FU  Shengjun ZHOU  Shinichi TAMURA  

     
    PAPER-Biological Engineering

      Vol:
    E95-D No:4
      Page(s):
    1142-1150

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68 mm (in-plane resolution of the CT data).

  • Joint Diversity for the Block Diagonalization-Precoded Spatial Multiplexing System with Multiple Users

    Donghun LEE  Hyunduk KANG  Byungjang JEONG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:4
      Page(s):
    1300-1306

    In this paper, we propose a joint diversity algorithm for error-rate minimization in multi-user spatial multiplexing (SM) systems with block diagonalization (BD)-precoding. The proposed algorithm adapts or selects the user set, transmit antenna subset, and the number of streams by an exhaustive search over the available resources. The proposed algorithm makes use of the multi-user diversity (MUD) and the spatial diversity gains as well as the array gain through selecting the best set. Exhaustive search, however, imposes a heavy burden in terms of computational complexity which exponentially increases with the size of the total number of users, streams, and transmit antennas. For complexity reduction, we propose two suboptimal algorithms which reduce the search space by first selecting the best user or by both selecting the best user and fixing the number of streams. Simulation results show that the proposed algorithms improve error probability over the conventional algorithm due to their diversity improvement and the signal-to-noise ratio (SNR) gains over the conventional algorithm. We also show that the suboptimal algorithms significantly reduce the computational complexity over exhaustive search with low-SNR loss.

  • The Impact of Disjoint Multiple Paths on SCTP in the Connected MANET for Emergency Situations

    Jeongseo PARK  Jinsoo CHO  Taekeun PARK  

     
    LETTER-Internet

      Vol:
    E95-B No:3
      Page(s):
    1011-1014

    In this letter, we investigate the performance impact of disjoint multiple paths on SCTP in the connected MANET under emergency situations. Disjoint multiple paths allow multi-homing of SCTP to be fully utilized in MANETs, but it may cause inappropriate SACK handling. Through simulations, we evaluate the impact in terms of throughput and energy efficiency.

  • PAPR Reduction of TDD-CDMA Using Joint Transmission Technique

    Norharyati BINTI HARUM  Tomoaki OHTSUKI  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    933-942

    Joint transmission (JT) in time-division-duplex code-division multiple-access (TDD-CDMA) systems can provide a low peak-to-average power ratio (PAPR) for single paths, but causing a high PAPR in multipath environments. To avoid the high PAPR, we propose a new approach to JT technique by selecting certain paths instead of all paths used in JT processing so that PAPR becomes lower. The path selection proposal involves two methods; path selection by taking certain paths from all paths and by taking paths having path gains above a certain threshold value. To enhance the effectiveness of the proposed techniques, we evaluate a combination of the proposed technique with the clipping technique. We evaluate both PAPR and bit error rate (BER) performance for the proposed techniques and its combination with the clipping technique. We compare the results of the proposed techniques with conventional JT technique and the combination techniques with clipping technique. From the results of computer simulation, we show that the proposed path selection techniques perform low PAPR and good BER performance compared to the conventional JT processing. We also show that the combination of proposed path selection technique and clipping performs low PAPR performance without severe BER degradation compared to the conventional clipping technique.

  • Algorithm of Determining BER-Minimized Block Delay for Joint Linear Transceiver Design with CSI

    Chun-Hsien WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:3
      Page(s):
    657-660

    This letter proposes an algorithm of determining the BER-minimized block delay for detection and the associated precoder design once the channel state information and limited transmission power are given. Simulation cases demonstrate the adjusting capability of the proposed algorithm for achieving best BER performance of the joint linear transceiver design.

  • Kalman-Filtering-Based Joint Angle Measurement with Wireless Wearable Sensor System for Simplified Gait Analysis

    Hiroki SAITO  Takashi WATANABE  

     
    LETTER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E94-D No:8
      Page(s):
    1716-1720

    The aim of this study is to realize a simplified gait analysis system using wearable sensors. In this paper, a joint angle measurement method using Kalman filter to correct gyroscope signals from accelerometer signals was examined in measurement of hip, knee and ankle joint angles with a wireless wearable sensor system, in which the sensors were attached on the body without exact positioning. The lower limb joint angles of three healthy subjects were measured during gait with the developed sensor system and a 3D motion measurement system in order to evaluate the measurement accuracy. Then, 10 m walking measurement was performed under different walking speeds with a healthy subject in order to find the usefulness of the system as a simplified gait analysis system. The joint angles were measured with reasonable accuracy, and the system showed joint angle changes that were similar to those shown in a previous report as walking speed changed. It would be necessary to examine the influence of sensor attachment position and method for more stable measurement, and also to study other parameters for gait evaluation.

  • Low Complexity Algorithms for Multi-Cell Joint Channel Estimation in TDD-CDMA Systems

    Peng XUE  Jae Hyun PARK  Duk Kyung KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:8
      Page(s):
    2431-2434

    In this letter, we propose two low complexity algorithms for least square (LS) and minimum mean square error (MMSE) based multi-cell joint channel estimation (MJCE). The algorithm for LS-MJCE achieves the same complexity and mean square error (MSE) performance as the previously proposed most efficient algorithm, while the algorithm for MMSE-MJCE is superior to the conventional ones, in terms of either complexity or MSE performance.

  • Iterative Minimum Mean Square Error Interference Alignment Scheme for the MIMO X Channel

    Hui SHEN  Bin LIN  Yi LUO  Feng LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1348-1354

    In this paper, we propose a new interference alignment (IA) scheme that jointly designs the linear transmitter and receiver for the 2-user MIMO X channel system, using minimum total mean square error criterion, subject to each transmitter power constraint. We show that transmitters and receivers under such criteria could be realized through a joint iterative algorithm. Considering the imperfection of channel state information (CSI), we also extend the minimum mean square error interference alignment schemes for the MIMO X channel with CSI estimation error. A robust iterative algorithm which is insensitve to CSI estimation error is proposed. Simulation results are also provided to demonstrate the proposed algorithm.

  • Design Optimization of H-Plane Waveguide Component by Level Set Method

    Koichi HIRAYAMA  Yasuhide TSUJI  Shintaro YAMASAKI  Shinji NISHIWAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:5
      Page(s):
    874-881

    We present a design optimization method of H-plane waveguide components, based on the level set method with the finite element method. In this paper, we propose a new formulation for the improvement of a level set function, which describes shape, location, and connectivity of dielectric in a design region. Employing the optimization procedure, we demonstrate that optimized structures of an H-plane waveguide filter and T-junction are obtained from an initial structure composed of several circular blocks of dielectric.

  • A Practical Code Rate Decision Scheme Based on Playable Bitrate Model for Error-Resilient Joint Source-Channel Coding

    Yo-Won JEONG  Kwang-Deok SEO  Kyu Ho PARK  

     
    PAPER

      Vol:
    E94-B No:3
      Page(s):
    676-685

    Joint source-channel coding (JSCC) is a method to jointly allocate the given total transmission bitrate to the source coding and channel coding to maximize the video quality at the receiving end. In this paper, we propose a practical model for efficiently determining a near-optimal code rate for JSCC in real-time video communications. The conventional code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and typically employ the process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we introduce a very simple video quality model based on the playable bitrate which is defined as the total bit amount per unit time that is not affected by the channel loss during transmission including correctly recovered bits by the channel decoder. Because the video quality at the receiving end is clearly commensurate with the playable bitrate, we can easily determine the quality-oriented near-optimal code rate by finding the code rate that maximizes the playable bitrate at the sender side. The proposed playable bitrate model is very simple because it does not require the complex training procedure for obtaining model parameters, which is usually required in the conventional code rate decision method. It is shown by simulations that the proposed code rate decision scheme based on the playable bitrate model can efficiently determine the near-optimal code rate for JSCC in terms of high accuracy on the optimal code rate.

61-80hit(179hit)