The search functionality is under construction.

Keyword Search Result

[Keyword] left-handed(37hit)

1-20hit(37hit)

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • Monocone Antenna with Short Elements on Wideband Choke Structure Using Composite Right/Left-Handed Coaxial Line

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1408-1418

    The composite right/left-handed (CRLH) coaxial line (CL) with wideband electromagnetic band gap (EBG) is applied to the wideband choke structure for a monocone antenna with short elements, and the resulting characteristics are considered. In the proposed antenna, impedance matching and leakage current suppression can be achieved across a wideband off. The lowest frequency (|S11| ≤ -10dB) of the proposed antenna is about the same as that of the monocone antenna on an infinite ground plane. In addition, the radiation patterns of the proposed antenna are close to the figure of eight in wideband. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • Class-F GaN HEMT Amplifiers Using Compact CRLH Harmonic Tuning Stubs Designed Based on Negative Order Resonance Modes

    Shinichi TANAKA  Sota KOIZUMI  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    691-698

    Extremely compact harmonic tuning circuits for class-F amplifiers are realized using composite right-/left-handed (CRLH) transmission line stubs. The proposed circuits take up only a small fraction of the amplifier circuit area and yet are capable of treating four harmonics up to the 5th with a single stub or double stub configuration. This has become possible by using the negative order resonance modes of the CRLH TL, allowing for flexible and simultaneous control of many harmonics by engineering the dispersion relation of the stub line. The CRLH harmonic tuning stubs for 2-GHz amplifiers were realized using surface mounting chip capacitors, whereas the stub for 4-GHz amplifiers was fabricated based fully on microstrip-line technology. The fabricated 2-GHz and 4-GHz GaN HEMT class-F amplifiers exhibited peak drain efficiency and peak PAE of more than 83% and 74%, respectively.

  • Coaxially Fed Antenna Composed of Monopole and Choke Structure Using Two Different Configurations of Composite Right/Left-Handed Coaxial Lines

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    205-215

    Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.

  • Composite Right-/Left-Handed Transmission Line Stub Resonators for X-Band Low Phase-Noise Oscillators

    Shinichi TANAKA  Hiroki NISHIZAWA  Kei TAKATA  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    734-743

    This paper describes a novel composite right-/left-handed (CRLH) transmission line (TL) stub resonator for X-band low phase-noise oscillator application. The bandpass filter type resonator composed only of microstrip components exhibits unloaded-Q exceeding that of microstrip-line resonators by engineering the dispersion relation for the CRLH TL. Two different types of stub resonator using identical and non-identical unit-cells are compared. Although the latter type was found to be superior to the former in terms of spurious frequency responses and the circuit size, care was taken to prevent the parasitic inductances distributed in the interdigital capacitors from impeding the Q-factor control capability of the resonator. The stub resonator thus optimized was applied to an 8.8-GHz SiGe HBT oscillator, which achieved a phase-noise of -134dBc/Hz at 1-MHz offset despite the modest dielectric loss tangent of the PCB laminate used as the substrate of the circuit.

  • Applications of Dispersion-Engineered Composite Right-/Left-Handed Transmission Line Stubs for Microwave Active Circuits

    Shinichi TANAKA  Kengo SAITO  Toshiaki OKA  Yodai SHIBOSAWA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    866-874

    Novel design approaches for microwave active circuits using composite right-/left-handed (CRLH) transmission line (TL) stubs are presented. We show that, by modifying the dispersion diagram of the CRLH TL stub, the frequency band or the harmonic tuning capability can be enhanced in such a way that it would have been difficult or impractical if done using conventional micro-strip line stubs. The frequency response of the CRLH TL stub can be controlled almost arbitrarily while at the same time reducing the stub length significantly, because the dispersion curve in the left-handed region and in the right-handed region is controlled independently. As a proof of concept, a triple-band rectifier, single-band and dual-band harmonic tuning circuits for class-F amplifiers are demonstrated.

  • 4.5-dB CMOS Forward Coupler Incorporating Asymmetric Left-Handed Coupled Lines at 430 GHz

    GuangFu LI  Hsien-Shun WU  Ching-Kuang C. TZUANG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    849-855

    An asymmetric left-handed coupled-line is presented to implement the tight forward coupler. Two left-handed transmission lines are coupled through its shunt inductors. The numerical procedures based on the generalized four-port scattering parameters combined with the periodical boundary conditions are applied to extract the modal characteristics of the asymmetric coupled-line, and theoretically predict that the proposed coupled-line can make a normalized phase constant of c mode 1.57 times larger than π mode for the forward coupler miniaturization. The design curves based on different overlapping length of the shunt inductors are reported for the coupler design. The procedures, so-called the port-reduction-method (PRM), are applied to experimentally characterize the coupler prototype using the two-port instruments. The measured results confirm that prototype uses 0.21 λg at 430 GHz to achieve -4.55 dB forward coupling with 13% 1-dB operating bandwidth.

  • New Negative Refractive Index Material Composed of Dielectric Prisms with Metal Patterns

    Hiroshi KUBO  Kazuhiro NISHIBAYASHI  Tsunayuki YAMAMOTO  Atsushi SANADA  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1273-1280

    A two-dimensional negative refractive index material is proposed. The material has a bulky structure composed of dielectric prism cells with metal patterns. The material is expressed by an equivalent circuit. The propagation regions of two left-handed modes calculated from the equivalent circuit exist near the propagation regions obtained by electromagnetic simulation. It is confirmed by simulation that the incident plane wave goes into the material with low reflection by using the second left-handed mode and attaching metal conversion strips around the material. A negative refractive index slab lens with 15×9 cells is made to measure the field distribution of wave out of the lens. It is shown that the resolution of the slab lens exceeds the diffraction-limit.

  • Propagation Characteristics on the Left-Handed Mode in the Material Composed of Metal Strips Put Alternately on Front and Back Sides

    Hiroshi KUBO  Takenori YOSHIDA  Atsushi SANADA  Tsunayuki YAMAMOTO  

     
    BRIEF PAPER

      Vol:
    E95-C No:10
      Page(s):
    1658-1661

    A left-handed material with simple structure is proposed. The material is composed of periodic metal strips exhibiting both electric property and magnetic property. The dispersion relations and the transmission characteristics are confirmed experimentally. The main field pattern of guided mode in the material is similar to that of the plane wave, and a transmission characteristic with low reflection is obtained for an impedance matching region.

  • Experimental Verifications of Left-Handed Characteristics of 3-D Left-Handed Metamaterial Composed of Periodic Wired Metallic Spheres

    Tsunayuki YAMAMOTO  Atsushi SANADA  Hiroshi KUBO  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1652-1657

    The left-handed (LH) operation of a three-dimensional (3-D) LH material composed of wired metallic spheres is experimentally confirmed. A 15153-cell periodic structure designed to have an isotropic LH characteristics is fabricated by a 3-D printer with post plating technology, and near-field measurements of refracted waves by the negative refractive index slab lens are carried out. The dispersion characteristics measured from the near-field distributions on the surface of the LH material clearly show that the structure supports the backward waves at 12 GHz band. It is also shown experimentally that the resolution of the slab lens exceeds the diffraction limit by near field measurements with a single source and adjacent two sources. In addition, near-field measurements from the LH material near the Γ-point frequency at 12.90 GHz are carried out. A highly directive plane wave with a single point source is observed and the near-zero-index operation has been confirmed.

  • Dual-Band Magnetic Loop Antenna with Monopolar Radiation Using Slot-Loaded Composite Right/Left-Handed Structures

    Seongmin PYO  Min-Jae LEE  Kyoung-Joo LEE  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:2
      Page(s):
    627-630

    A novel dual-band magnetic loop antenna is proposed using slot-loaded composite right/left-handed (SL-CRLH) structures. Since each radiating element consists of a symmetrically-array of unit-cells, a dual-band magnetic loop source is obtained with unchanged beam patterns. Simulations and measurements show its good radiation performance with monopole-like radiation patterns in both operating bands.

  • Band Pass Response on Left-Handed Ferrite Rectangular Waveguide

    Kensuke OKUBO  Makoto TSUTSUMI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1565-1571

    This paper investigates characteristics of periodic structure of ferrite and dielectric slabs in cutoff waveguide which include left-handed operation. Transmission line model and finite element simulation are used to get dispersion characteristics and scattering parameters. Band pass response of left-handed ferrite mode at negative permeability region are discussed with backward wave phenomenon. Theoretical results show that by choosing appropriate ratio of (1) ferrite width and dielectric width, and (2) ferrite length and dielectric length, band pass response with steep edge characteristics can be obtained by the LH ferrite mode, which are confirmed with experiments using single crystal of yttrium iron garnet ferrite. Good band pass and phase shift responses are observed in S band.

  • Leaky Wave Antenna Using Composite Right/Left-Handed Transmission Line Composed of Ladder Network for UHF Band

    Shinji KAMADA  Naobumi MICHISHITA  Yoshihide YAMADA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2562-2569

    Broadband antennas have various applications in digital terrestrial television (DTV) services. Compact broadband antennas are required for arranging in long and narrow space along the rim of a laptop display. A leaky-wave antenna using the composite right/left-handed transmission line (CRLH-TL) is one of the candidates for achieving the broadband antenna. However, there are not enough to design guideline of small leaky wave antennas using the CRLH-TL for UHF band. In this paper, a CRLH-TL comprising a ladder network is proposed for broadband and simple structure. The paper also discusses the design of a leaky-wave antenna with the CRLH-TL operating in the DTV band. The relation between the operating bandwidth and attenuation constant of the CRLH-TL is discussed. An antenna that can be accommodated in the limited and narrow space available in mobile terminals has to be designed. Hence, the effects of the number of cells and a finite ground plane are discussed with the purpose of achieving the miniaturization of the antenna. In this study, the transmission and radiation characteristics of the fabricated antennas are measured. The gain of the fabricated antenna is confirmed to remain almost constant even when the operating frequency is varied. The maximum gain and operating band achieved in this study are approximately -0.6 dBi and about 54%, respectively.

  • Shielded Structure of Composite Right/Left-Handed Transmission Line Using Substrate Integrated Waveguide and Floating-Conductor

    Kensuke OKUBO  Mitsuyoshi KISHIHARA  Akifumi IKEDA  Jiro YAMAKITA  Isao OHTA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1055-1062

    A composite right/left-handed transmission line (CRLH-TL) using substrate integrated waveguide (SIW) with floating-conductor (SIW-type CRLH-TL) for microwave and millimeter wave frequencies has been proposed by the authors. This paper proposes a new configuration that is shield type of the SIW-type CRLH-TL, which can suppress the radiation from the exposed floating-conductors, and shows that even if the shielded structure is used, the SIW-type CRLH-TL supports the LH mode as well as the prototype. Proposed CRLH-TL consists of a SIW with slot apertures (part 1), a dielectric film with floating-conductors (part 2) and a SIW without lower conductor (part 3). A shielded SIW-type CRLH-TL for X--K band (with wide LH mode bandwidth of 6 GHz and transition frequency of 16 GHz) that satisfies the balance condition is designed. Dispersion diagram and S-parameters are derived numerically, and typical field distributions of RH and LH transmission and the zeroth-order resonance are shown. Measured result agrees well with theoretical result, by considering the accuracy performance and loss factors of the fabricated CRLH-TL. Proposed CRLH-TL has advantage of simple manufacturing, because the parts 1--3 are composed of simple planar periodic structure. It is expected to be one of the basic structure of CRLH-TL or components such as LH coupler above 10 GHz or millimeter wave frequency.

  • Demultiplexing Property Owing to a Composite Right/Left-Handed Transmission Line with Leaky Wave Radiation toward Functional Wireless Interconnects

    Sadaharu ITO  Michihiko SUHARA  

     
    PAPER-Analog/RF Devices

      Vol:
    E93-C No:5
      Page(s):
    619-624

    A composite right/left-handed (CRLH) transmission line with demultiplexing property is proposed towards short-range functional wireless interconnects. The CRLH line is designed by analyzing dispersion relation of the microstrip line having a split-ring and a double-stub structure to realize frequency selective properties for leaky wave radiation. A prototype device is fabricated and estimated to study feasibility of the demultiplexing operation around ten GHz.

  • A Novel Composite Right/Left-Handed Rectangular Waveguide with Tilted Corrugations and Its Application to Millimeter-Wave Frequency-Scanning Antenna

    Toru IWASAKI  Hirokazu KAMODA  Takao KUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3843-3849

    A novel structure for a composite right/left-handed (CRLH) corrugated waveguide in the millimeter-wave band is proposed. The CRLH waveguide is composed of a rectangular waveguide with tilted corrugations on its bottom broad wall. By operating above and below the cutoff frequency of the dominant mode of the rectangular waveguide, the CRLH waveguide provides, respectively, an inherent series inductance and shunt capacitance, and an inherent shunt inductance. Moreover, the tilted corrugations provide a series inductance and a series capacitance, which can support CRLH propagation. A frequency-scanning antenna using this CRLH waveguide is also studied numerically and experimentally. The results demonstrate that the antenna can provide backward-to-forward beam scanning, including the broadside direction. A scanning angle from -9.9 to +2.2 is achieved within a 1.8-GHz frequency range in the 60-GHz band.

  • Characterization of Left-Handed Traveling-Wave Transistors

    Shun NAKAGAWA  Koichi NARAHARA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:11
      Page(s):
    1396-1400

    The characteristics of a left-handed traveling-wave transistor, which is formulated as two composite right- and left-handed (CRLH) transmission lines with both passive and active couplings, are discussed for generating unattenuated waves having left-handedness. The design criteria for convective instability are described, together with results of numerical calculations that solve the transmission equation for the device.

  • Proximity Coupled Interconnect Using Broadside Coupled Composite Right/Left-Handed Transmission Line

    Naobumi MICHISHITA  Akiyoshi ABE  Yoshihide YAMADA  Anthony LAI  Tatsuo ITOH  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1150-1156

    In this paper, the feasibility of composite right/left-handed transmission lines for realizing proximity coupled interconnects is reported. The proposed interconnects' resonant length can be miniaturized due to the zeroth order resonance supported by a composite right/left-handed transmission line resonator. In addition, the proposed interconnects can achieve broadside coupling because the zeroth order resonance occurs in the fast-wave region. Simulated and measured electric field distributions are shown to explain the broadside coupling phenomenon. To validate the arbitrary size and broadside coupling of the proposed interconnects, simulated and measured transmission characteristics are presented. The results show that low insertion loss can be achieved by using single and double broadside coupling between interconnects.

  • An Elliptic-Function Bandpass Filter Utilizing Left-Handed Operations of an Inter-Digital Coupled Line

    Hiromitsu UCHIDA  Naofumi YONEDA  Yoshihiko KONISHI  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1772-1777

    A new elliptic-function bandpass filter (BPF) is proposed, which utilizes an inter-digital coupled line (IDCPL) as a left-handed transmission line. The IDCPL is employed in order to realize a negative coupling between non-adjacent resonators in a wideband BPF. As the authors' knowledge, the left-handed operations of the IDCPL has rarely utilized before, although the IDCPL itself has been widely used in many microwave circuits without being paid attention to the left-handed operations. Measured characteristics of two BPFs are presented in this paper, one is targeted for 3-4 GHz WiMAX systems, and the other is for 3-5 GHz ultra wideband communication systems (UWB).

  • A Left-Handed Transmission Line Composed of Two Waveguides with Stubs

    Hiroshi KUBO  Hidetaka KUWAHARA  Atsushi SANADA  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1765-1771

    A new structure of a waveguide-type left-handed transmission line is proposed. It is composed of two rectangular waveguides with many stubs. One waveguide is put on another waveguide symmetrically. When one mode with odd electric field distribution is excited, the stubs work as open stubs and the mode propagates with very small loss. Guided regions of the left-handed mode and a right-handed mode are discussed using an approximate equivalent circuit. Tuning the structure parameters, the band gap between the two regions can be removed, and the wave propagates continuously from the left-handed frequency regions to the right-handed frequency region. The transmission line is applied to a leaky waveguide. It is confirmed experimentally that the beam angle of the radiation wave changes from the backward to the forward directions.

1-20hit(37hit)