The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] low-loss(5hit)

1-5hit
  • Transmission Loss of Optical Fibers; Achievements in Half a Century Open Access

    Hiroo KANAMORI  

     
    INVITED PAPER-Optical Fiber for Communications

      Pubricized:
    2021/02/15
      Vol:
    E104-B No:8
      Page(s):
    922-933

    This paper reviews the evolutionary process that reduced the transmission loss of silica optical fibers from the report of 20dB/km by Corning in 1970 to the current record-low loss. At an early stage, the main effort was to remove impurities especially hydroxy groups for fibers with GeO2-SiO2 core, resulting in the loss of 0.20dB/km in 1980. In order to suppress Rayleigh scattering due to composition fluctuation, pure-silica-core fibers were developed, and the loss of 0.154dB/km was achieved in 1986. As the residual main factor of the loss, Rayleigh scattering due to density fluctuation was actively investigated by utilizing IR and Raman spectroscopy in the 1990s and early 2000s. Now, ultra-low-loss fibers with the loss of 0.150dB/km are commercially available in trans-oceanic submarine cable systems.

  • Millimeter-Wave High-Power MMIC Switch with Multiple FET Resonators

    Masatake HANGAI  Tamotsu NISHINO  Morishige HIEDA  Kunihiro ENDO  Moriyasu MIYAZAKI  

     
    PAPER-Active Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1695-1701

    A millimeter-wave low-loss, high-isolation and high-power terminated MMIC switch is developed, and the design theory is formulated. Our invented switch is designed based on a non-linear relationship between the parallel resistance of an FET and its gate width. Our measurements of the parallel resistance with different gate width have revealed that the resistance is inverse proportion to a square of the gate width. By using this relationship, we have found the fact that the multiple FET resonators with smaller gate width and high inductance elements realize high-Q performance for the same resonant frequency. Since the power handling capability is determined by the total gate width, our switch circuit could reduce its insertion loss, keeping the high-power performance. We additionally describe the design method of this switch circuit. The relationships between the gate widths of the FETs and the electrical performances are described analytically. The required gate widths of the FETs for handling high power signal are represented, and the design equations to obtain lower insertion loss and higher isolation performances keeping high power capability are presented. To verify this methodology, we fabricated a MMIC switch. The MMIC had insertion loss of 2.86 dB, isolation of 37 dB and power handling capability of more than 33 dBm at 32 GHz.

  • Standardization of Measurement Methods of Low-Loss Dielectrics and High-Temperature Superconducting Films

    Yoshio KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E87-C No:5
      Page(s):
    652-656

    The present state of IEC and JIS standards is reviewed on measurement methods of low-loss dielectric and high-tempera-ture superconductor (HTS) materials in the microwave and millimeter wave range. Four resonance methods are discussed actually, that is, a two-dielectric resonator method for dielectric rod measurements, a two-sapphire resonator method for HTS film measurements, a cavity resonator method for microwave measurements of dielectric plates and a cutoff circular waveguide method for millimeter wave measurements of dielectric plates. These methods realize the high accuracy sufficient for measurements of temperature dependence of material properties.

  • Dielectric Measurements in the 60-GHz Band Using a High-Q Gaussian Beam Open Resonator

    Philippe COQUET  Toshiaki MATSUI  Masahiko KIYOKAWA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1125-1130

    A full confocal Gaussian beam open resonator system that determines the dielectric properties of low-loss materials in the 60-GHz band is developed. To achieve high Q values a quasi-optical coupling method is used to feed the resonator. It is connected to a computer-controlled HP 8510C vector network analyzer for automatic measurement. The frequency variation method is used and the data are processed using the open resonator scalar theory. Results from 96% and 99.5% alumina samples with thicknesses ranging from 0.38 mm to 1 mm, are presented in the V band, with loss tangent values of the order of 100 µ radians. This system should be able to measure substrates as thin as less than 0.1 mm to 0.3 mm, which are the thicknesses of substrates in practical use.

  • Characterization and Application of Lumped Double Crosstie Slow-Wave Transmission Lines

    Hideki KAMITSUNA  Hiroyo OGAWA  

     
    PAPER

      Vol:
    E76-C No:6
      Page(s):
    968-976

    This paper describes the characteristics and application of lumped double crosstie slow-wave transmission lines (DCT-SLWs) which we previously proposed. Firstly, the relationship between the DCT-SLW's characteristics and their parameters, i. e. triplate stripline widths and inductor resistances, are numerically and experimentally investigated. Excellent slow-wave lines with both high slow-wave factors (1240) and a wide characteristic impedance range (35100Ω) are achieved in good agreement with calculated results. A 50-Ω DCT-SLW that reduces circuit area more than 80%, and has an insertion loss less than that of 22-µm-wide TFMS lines is achieved by adapting a low-loss inductor in the frequencies below 14.5 GHz. Secondly, the application of DCT-SLW to non-dispersive, dispersive delay lines and branch-line hybrids is discussed. Specifically, very small 4-GHz-band branch-line hybrids are fabricated in a chip area of 0.7 mm2. Fundamental microwave circuits utilizing slow-wave lines in MMICs are demonstrated for the first time.