The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mathematic(59hit)

1-20hit(59hit)

  • Using Genetic Algorithm and Mathematical Programming Model for Ambulance Location Problem in Emergency Medical Service Open Access

    Batnasan LUVAANJALBA  Elaine Yi-Ling WU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/08
      Vol:
    E107-D No:9
      Page(s):
    1123-1132

    Emergency Medical Services (EMS) play a crucial role in healthcare systems, managing pre-hospital or out-of-hospital emergencies from the onset of an emergency call to the patient’s arrival at a healthcare facility. The design of an efficient ambulance location model is pivotal in enhancing survival rates, controlling morbidity, and preventing disability. Key factors in the classical models typically include travel time, demand zones, and the number of stations. While urban EMS systems have received extensive examination due to their centralized populations, rural areas pose distinct challenges. These include lower population density and longer response distances, contributing to a higher fatality rate due to sparse population distribution, limited EMS stations, and extended travel times. To address these challenges, we introduce a novel mathematical model that aims to optimize coverage and equity. A distinctive feature of our model is the integration of equity within the objective function, coupled with a focus on practical response time that includes the period required for personal protective equipment procedures, ensuring the model’s applicability and realism in emergency response scenarios. We tackle the proposed problem using a tailored genetic algorithm and propose a greedy algorithm for solution construction. The implementation of our tailored Genetic Algorithm promises efficient and effective EMS solutions, potentially enhancing emergency care and health outcomes in rural communities.

  • A Simplified Method for Determining Mathematical Representation of Microwave Oscillator Load Characteristics Open Access

    Katsumi FUKUMOTO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/26
      Vol:
    E107-C No:5
      Page(s):
    150-152

    Previously a method was reported to determine the mathematical representation of the microwave oscillator admittance by using numerical calculation. When analyzing the load characteristics and synchronization phenomena by using this formula, the analysis results meet with the experimental results. This paper describes a method to determine the mathematical representation manually.

  • Data Gathering Method with High Accuracy of Environment Recognition Using Mathematical Optimization in Packet-Level Index Modulation

    Ryuji MIYAMOTO  Osamu TAKYU  Hiroshi FUJIWARA  Koichi ADACHI  Mai OHTA  Takeo FUJII  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1337-1349

    With the rapid developments in the Internet of Things (IoT), low power wide area networks (LPWAN) framework, which is a low-power, long-distance communication method, is attracting attention. However, in LPWAN, the access time is limited by Duty Cycle (DC) to avoid mutual interference. Packet-level index modulation (PLIM) is a modulation scheme that uses a combination of the transmission time and frequency channel of a packet as an index, enabling throughput expansion even under DC constraints. The indexes used in PLIM are transmitted according to the mapping. However, when many sensors access the same index, packet collisions occur owing to selecting the same index. Therefore, we propose a mapping design for PLIM using mathematical optimization. The mapping was designed and modeled as a quadratic integer programming problem. The results of the computer simulation evaluations were used to realize the design of PLIM, which achieved excellent sensor information aggregation in terms of environmental monitoring accuracy.

  • Deep Unrolling of Non-Linear Diffusion with Extended Morphological Laplacian

    Gouki OKADA  Makoto NAKASHIZUKA  

     
    PAPER-Image

      Pubricized:
    2023/07/21
      Vol:
    E106-A No:11
      Page(s):
    1395-1405

    This paper presents a deep network based on unrolling the diffusion process with the morphological Laplacian. The diffusion process is an iterative algorithm that can solve the diffusion equation and represents time evolution with Laplacian. The diffusion process is applied to smoothing of images and has been extended with non-linear operators for various image processing tasks. In this study, we introduce the morphological Laplacian to the basic diffusion process and unwrap to deep networks. The morphological filters are non-linear operators with parameters that are referred to as structuring elements. The discrete Laplacian can be approximated with the morphological filters without multiplications. Owing to the non-linearity of the morphological filter with trainable structuring elements, the training uses error back propagation and the network of the morphology can be adapted to specific image processing applications. We introduce two extensions of the morphological Laplacian for deep networks. Since the morphological filters are realized with addition, max, and min, the error caused by the limited bit-length is not amplified. Consequently, the morphological parts of the network are implemented in unsigned 8-bit integer with single instruction multiple data set (SIMD) to achieve fast computation on small devices. We applied the proposed network to image completion and Gaussian denoising. The results and computational time are compared with other denoising algorithm and deep networks.

  • Optimal Online Bin Packing Algorithms for Some Cases with Two Item Sizes

    Hiroshi FUJIWARA  Masaya KAWAGUCHI  Daiki TAKIZAWA  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/07
      Vol:
    E106-A No:9
      Page(s):
    1100-1110

    The bin packing problem is a problem of finding an assignment of a sequence of items to a minimum number of bins, each of capacity one. An online algorithm for the bin packing problem is an algorithm that irrevocably assigns each item one by one from the head of the sequence. Gutin, Jensen, and Yeo (2006) considered a version in which all items are only of two different sizes and the online algorithm knows the two possible sizes in advance, and gave an optimal online algorithm for the case when the larger size exceeds 1/2. In this paper we provide an optimal online algorithm for some of the cases when the larger size is at most 1/2, on the basis of a framework that facilitates the design and analysis of algorithms.

  • Modeling Inter-Sector Air Traffic Flow and Sector Demand Prediction

    Ryosuke MISHIMA  Kunihiko HIRAISHI  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2022/04/11
      Vol:
    E105-A No:10
      Page(s):
    1413-1420

    In 2015, the Ministry of Land, Infrastructure and Transportation started to provide information on aircraft flying over Japan, called CARATS Open Data, and to promote research on aviation systems actively. The airspace is divided into sectors, which are used for limiting air traffic to control safely and efficiently. Since the demand for air transportation is increasing, new optimization techniques and efficient control have been required to predict and resolve demand-capacity imbalances in the airspace. In this paper, we aim to construct mathematical models of the inter-sector air traffic flow from CARATS Open Data. In addition, we develop methods to predict future sector demand. Accuracy of the prediction is evaluated by comparison between predicted sector demand and the actual data.

  • Blind Signal Separation for Array Radar Measurement Using Mathematical Model of Pulse Wave Propagation Open Access

    Takuya SAKAMOTO  

     
    PAPER-Sensing

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    981-989

    This paper presents a novel blind signal separation method for the measurement of pulse waves at multiple body positions using an array radar system. The proposed method is based on a mathematical model of pulse wave propagation. The model relies on three factors: (1) a small displacement approximation, (2) beam pattern orthogonality, and (3) an impulse response model of pulse waves. The separation of radar echoes is formulated as an optimization problem, and the associated objective function is established using the mathematical model. We evaluate the performance of the proposed method using measured radar data from participants lying in a prone position. The accuracy of the proposed method, in terms of estimating the body displacements, is measured using reference data taken from laser displacement sensors. The average estimation errors are found to be 10-21% smaller than those of conventional methods. These results indicate the effectiveness of the proposed method for achieving noncontact measurements of the displacements of multiple body positions.

  • Deep Gaussian Denoising Network Based on Morphological Operators with Low-Precision Arithmetic

    Hikaru FUJISAKI  Makoto NAKASHIZUKA  

     
    PAPER-Image, Digital Signal Processing

      Pubricized:
    2021/11/08
      Vol:
    E105-A No:4
      Page(s):
    631-638

    This paper presents a deep network based on morphological filters for Gaussian denoising. The morphological filters can be applied with only addition, max, and min functions and require few computational resources. Therefore, the proposed network is suitable for implementation using a small microprocessor. Each layer of the proposed network consists of a top-hat transform, which extracts small peaks and valleys of noise components from the input image. Noise components are iteratively reduced in each layer by subtracting the noise components from the input image. In this paper, the extensions of opening and closing are introduced as linear combinations of the morphological filters for the top-hat transform of this deep network. Multiplications are only required for the linear combination of the morphological filters in the proposed network. Because almost all parameters of the network are structuring elements of the morphological filters, the feature maps and parameters can be represented in short bit-length integer form, which is suitable for implementation with single instructions, multiple data (SIMD) instructions. Denoising examples show that the proposed network obtains denoising results comparable to those of BM3D [1] without linear convolutions and with approximately one tenth the number of parameters of a full-scale deep convolutional neural network [2]. Moreover, the computational time of the proposed method using SIMD instructions of a microprocessor is also presented.

  • The Huffman Tree Problem with Upper-Bounded Linear Functions

    Hiroshi FUJIWARA  Yuichi SHIRAI  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-D No:3
      Page(s):
    474-480

    The construction of a Huffman code can be understood as the problem of finding a full binary tree such that each leaf is associated with a linear function of the depth of the leaf and the sum of the function values is minimized. Fujiwara and Jacobs extended this to a general function and proved the extended problem to be NP-hard. The authors also showed the case where the functions associated with leaves are each non-decreasing and convex is solvable in polynomial time. However, the complexity of the case of non-decreasing non-convex functions remains unknown. In this paper we try to reveal the complexity by considering non-decreasing non-convex functions each of which takes the smaller value of either a linear function or a constant. As a result, we provide a polynomial-time algorithm for two subclasses of such functions.

  • Overloaded Wireless MIMO Switching for Information Exchanging through Untrusted Relay in Secure Wireless Communication

    Arata TAKAHASHI  Osamu TAKYU  Hiroshi FUJIWARA  Takeo FUJII  Tomoaki OHTSUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1249-1259

    Information exchange through a relay node is attracting attention for applying machine-to-machine communications. If the node demodulates the received signal in relay processing confidentially, the information leakage through the relay station is a problem. In wireless MIMO switching, the frequency spectrum usage efficiency can be improved owing to the completion of information exchange within a short time. This study proposes a novel wireless MIMO switching method for secure information exchange. An overloaded situation, in which the access nodes are one larger than the number of antennas in the relay node, makes the demodulation of the relay node difficult. The access schedule of nodes is required for maintaining the overload situation and the high information exchange efficiency. This study derives the equation model of the access schedule and constructs an access schedule with fewer time periods in the integer programming problem. From the computer simulation, we confirm that the secure capacity of the proposed MIMO switching is larger than that of the original one, and the constructed access schedule is as large as the ideal and minimum time period for information exchange completion.

  • Analysis of Lower Bounds for Online Bin Packing with Two Item Sizes

    Hiroshi FUJIWARA  Ken ENDO  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/09
      Vol:
    E104-A No:9
      Page(s):
    1127-1133

    In the bin packing problem, we are asked to place given items, each being of size between zero and one, into bins of capacity one. The goal is to minimize the number of bins that contain at least one item. An online algorithm for the bin packing problem decides where to place each item one by one when it arrives. The asymptotic approximation ratio of the bin packing problem is defined as the performance of an optimal online algorithm for the problem. That value indicates the intrinsic hardness of the bin packing problem. In this paper we study the bin packing problem in which every item is of either size α or size β (≤ α). While the asymptotic approximation ratio for $alpha > rac{1}{2}$ was already identified, that for $alpha leq rac{1}{2}$ is only partially known. This paper is the first to give a lower bound on the asymptotic approximation ratio for any $alpha leq rac{1}{2}$, by formulating linear optimization problems. Furthermore, we derive another lower bound in a closed form by constructing dual feasible solutions.

  • Effect of Temperature on Electrical Resistance-Length Characteristic of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Takashi YOSHIDA  

     
    BRIEF PAPER

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:6
      Page(s):
    192-193

    It is found that the electrical resistance-length characteristic in an electroactive supercoiled polymer artificial muscle strongly depends on the temperature. This may come from the thermal expansion of coils in the artificial muscle, which increases the contact area of neighboring coils and results in a lower electrical resistance at a higher temperature. On the other hand, the electrical resistance-length characteristic collected during electrical driving seriously deviates from those collected at constant temperatures. Inhomogeneous heating during electrical driving seems to be a key for the deviation.

  • Asymptotic Approximation Ratios for Certain Classes of Online Bin Packing Algorithms

    Hiroshi FUJIWARA  Yuta WANIKAWA  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2020/10/12
      Vol:
    E104-D No:3
      Page(s):
    362-369

    The performance of online algorithms for the bin packing problem is usually measured by the asymptotic approximation ratio. However, even if an online algorithm is explicitly described, it is in general difficult to obtain the exact value of the asymptotic approximation ratio. In this paper we show a theorem that gives the exact value of the asymptotic approximation ratio in a closed form when the item sizes and the online algorithm satisfy some conditions. Moreover, we demonstrate that our theorem serves as a powerful tool for the design of online algorithms combined with mathematical optimization.

  • Clustering of Handwritten Mathematical Expressions for Computer-Assisted Marking

    Vu-Tran-Minh KHUONG  Khanh-Minh PHAN  Huy-Quang UNG  Cuong-Tuan NGUYEN  Masaki NAKAGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2020/11/24
      Vol:
    E104-D No:2
      Page(s):
    275-284

    Many approaches enable teachers to digitalize students' answers and mark them on the computer. However, they are still limited for supporting marking descriptive mathematical answers that can best evaluate learners' understanding. This paper presents clustering of offline handwritten mathematical expressions (HMEs) to help teachers efficiently mark answers in the form of HMEs. In this work, we investigate a method of combining feature types from low-level directional features and multiple levels of recognition: bag-of-symbols, bag-of-relations, and bag-of-positions. Moreover, we propose a marking cost function to measure the marking effort. To show the effectiveness of our method, we used two datasets and another sampled from CROHME 2016 with synthesized patterns to prepare correct answers and incorrect answers for each question. In experiments, we employed the k-means++ algorithm for each level of features and considered their combination to produce better performance. The experiments show that the best combination of all the feature types can reduce the marking cost to about 0.6 by setting the number of answer clusters appropriately compared with the manual one-by-one marking.

  • Massive MIMO Antenna Arrangement Considering Spatial Efficiency and Correlation between Antennas in Mobile Communications

    Kiyoaki ITOI  Masanao SASAKI  Hiroaki NAKABAYASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    570-581

    This paper presents an algorithm to arrange a large number of antenna elements in the limited space of massive MIMO base station antenna without degrading the communication quality under a street-cell line-of-sight environment in mobile communications. The proposed algorithm works by using mathematical optimization in which the objective function is the correlation coefficient between the channel responses of two elements of the base station antenna, according to an algorithm constructed based on the results obtained through basic examinations of the characteristics of the correlation coefficient between channel responses. The channel responses are computed by using the propagation path information obtained by ray-tracing. The arrangements output by the proposed algorithm are mainly evaluated by channel capacity comparison with uniformly spaced arrangements on the vertical plane in single user and multiuser environments. The evaluation results of these arrangements in downlink demonstrate the superiority of the arrangements generated by the proposed algorithm, especially in term of robustness against an increase in the number of users.

  • S-Shaped Nonlinearity in Electrical Resistance of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Masaki KAKU  

     
    BRIEF PAPER-Organic Molecular Electronics

      Pubricized:
    2019/08/05
      Vol:
    E103-C No:2
      Page(s):
    59-61

    S-shaped nonlinearity is found in the electrical resistance-length relationship in an electroactive supercoiled polymer artificial muscle. The modulation of the electrical resistance is mainly caused by the change in the contact condition of coils in the artificial muscle upon deformation. A mathematical model based on logistic function fairly reproduces the experimental data of electrical resistance-length relationship.

  • Blob Detection Based on Soft Morphological Filter

    Weiqing TONG  Haisheng LI  Guoyue CHEN  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/10/02
      Vol:
    E103-D No:1
      Page(s):
    152-162

    Blob detection is an important part of computer vision and a special case of region detection with important applications in the image analysis. In this paper, the dilation operator in standard mathematical morphology is firstly extended to the order dilation operator of soft morphology, three soft morphological filters are designed by using the operator, and a novel blob detection algorithm called SMBD is proposed on that basis. SMBD had been proven to have better performance of anti-noise and blob shape detection than similar blob filters based on mathematical morphology like Quoit and N-Quoit in terms of theoretical and experimental aspects. Additionally, SMBD was also compared to LoG and DoH in different classes, which are the most commonly used blob detector, and SMBD also achieved significantly great results.

  • Image Regularization with Total Variation and Optimized Morphological Gradient Priors

    Shoya OOHARA  Mitsuji MUNEYASU  Soh YOSHIDA  Makoto NAKASHIZUKA  

     
    LETTER-Image

      Vol:
    E102-A No:12
      Page(s):
    1920-1924

    For image restoration, an image prior that is obtained from the morphological gradient has been proposed. In the field of mathematical morphology, the optimization of the structuring element (SE) used for this morphological gradient using a genetic algorithm (GA) has also been proposed. In this paper, we introduce a new image prior that is the sum of the morphological gradients and total variation for an image restoration problem to improve the restoration accuracy. The proposed image prior makes it possible to almost match the fitness to a quantitative evaluation such as the mean square error. It also solves the problem of the artifact due to the unsuitability of the SE for the image. An experiment shows the effectiveness of the proposed image restoration method.

  • Vision Based Nighttime Vehicle Detection Using Adaptive Threshold and Multi-Class Classification

    Yuta SAKAGAWA  Kosuke NAKAJIMA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1235-1245

    We propose a method that detects vehicles from in-vehicle monocular camera images captured during nighttime driving. Detecting vehicles from their shape is difficult at night; however, many vehicle detection methods focusing on light have been proposed. We detect bright spots by appropriate binarization based on the characteristics of vehicle lights such as brightness and color. Also, as the detected bright spots include lights other than vehicles, we need to distinguish the vehicle lights from other bright spots. Therefore, the bright spots were distinguished using Random Forest, a multiclass classification machine-learning algorithm. The features of bright spots not associated with vehicles were effectively utilized in the vehicle detection in our proposed method. More precisely vehicle detection is performed by giving weights to the results of the Random Forest based on the features of vehicle bright spots and the features of bright spots not related to the vehicle. Our proposed method was applied to nighttime images and confirmed effectiveness.

  • A Petri Net Approach to Generate Integer Linear Programming Problems

    Morikazu NAKAMURA  Takeshi TENGAN  Takeo YOSHIDA  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    389-398

    This paper proposes a Petri net based mathematical programming approach to combinatorial optimization, in which we generate integer linear programming problems from Petri net models instead of the direct mathematical formulation. We treat two types of combinatorial optimization problems, ordinary problems and time-dependent problems. Firstly, we present autonomous Petri net modeling for ordinary optimization problems, where we obtain fundamental constraints derived from Petri net properties and additional problem-specific ones. Secondly, we propose a colored timed Petri net modeling approach to time-dependent problems, where we generate variables and constraints for time management and for resolving conflicts. Our Petri net approach can drastically reduce the difficulty of the mathematical formulation in a sense that (1) the Petri net modeling does not require deep knowledge of mathematical programming and technique of integer linear model formulations, (2) our automatic formulation allows us to generate large size of integer linear programming problems, and (3) the Petri net modeling approach is flexible for input parameter changes of the original problem.

1-20hit(59hit)