The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] metric(675hit)

301-320hit(675hit)

  • A UML Approximation of Three Chidamber-Kemerer Metrics and Their Ability to Predict Faulty Code across Software Projects

    Ana Erika CAMARGO CRUZ  Koichiro OCHIMIZU  

     
    PAPER-Software Engineering

      Vol:
    E93-D No:11
      Page(s):
    3038-3050

    Design-complexity metrics, while measured from the code, have shown to be good predictors of fault-prone object-oriented programs. Some of the most often used metrics are the Chidamber and Kemerer metrics (CK). This paper discusses how to make early predictions of fault-prone object-oriented classes, using a UML approximation of three CK metrics. First, we present a simple approach to approximate Weighted Methods per Class (WMC), Response For Class (RFC) and Coupling Between Objects (CBO) CK metrics using UML collaboration diagrams. Then, we study the application of two data normalization techniques. Such study has a twofold purpose: to decrease the error approximation in measuring the mentioned CK metrics from UML diagrams, and to obtain a more similar data distribution of these metrics among software projects so that better prediction results are obtained when using the same prediction model across different software projects. Finally, we construct three prediction models with the source code of a package of an open source software project (Mylyn from Eclipse), and we test them with several other packages and three different small size software projects, using their UML and code metrics for comparison. The results of our empirical study lead us to conclude that the proposed UML RFC and UML CBO metrics can predict fault-proneness of code almost with the same accuracy as their respective code metrics do. The elimination of outliers and the normalization procedure used were of great utility, not only for enabling our UML metrics to predict fault-proneness of code using a code-based prediction model but also for improving the prediction results of our models across different software packages and projects.

  • Analysis to Random Direction Model of Ad-Hoc Networks

    Yan-tao LIU  Ji-hua LU  Heng LIU  

     
    LETTER-Network

      Vol:
    E93-B No:10
      Page(s):
    2773-2776

    The asymptotic properties of node distribution and speed distribution in random direction model were analyzed, respectively, by the tools of geometric probability and palm calculus. The probability density function for node distribution in circular regions was obtained which indicated that mobile nodes tended to disperse as simulation advancing. The speed decay phenomenon was confirmed in this model. Moreover, the hypostasis of speed decay was proved to be the correlation between speed and duration within any movement period.

  • Cross-Layer Scheme to Control Contention Window for Per-Flow in Asymmetric Multi-Hop Networks

    Pham Thanh GIANG  Kenji NAKAGAWA  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2326-2335

    The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).

  • Speech Emotion Recognition Based on Parametric Filter and Fractal Dimension

    Xia MAO  Lijiang CHEN  

     
    LETTER-Speech and Hearing

      Vol:
    E93-D No:8
      Page(s):
    2324-2326

    In this paper, we propose a new method that employs two novel features, correlation density (Cd) and fractal dimension (Fd), to recognize emotional states contained in speech. The former feature obtained by a list of parametric filters reflects the broad frequency components and the fine structure of lower frequency components, contributed by unvoiced phones and voiced phones, respectively; the latter feature indicates the non-linearity and self-similarity of a speech signal. Comparative experiments based on Hidden Markov Model and K Nearest Neighbor methods are carried out. The results show that Cd and Fd are much more closely related with emotional expression than the features commonly used.

  • A Biometric Authenticated Key Agreement Protocol for Secure Token

    Eun-Jun YOON  Kee-Young YOO  

     
    LETTER-Information Network

      Vol:
    E93-D No:8
      Page(s):
    2311-2315

    This letter proposes a robust biometric authenticated key agreement (BAKA) protocol for a secure token to provide strong security and minimize the computation cost of each participant. Compared with other related protocols, the proposed BAKA protocol not only is secure against well-known cryptographical attacks but also provides various functionality and performance requirements.

  • Impact and Use of the Asymmetric Property in Bi-directional Cooperative Relaying under Asymmetric Traffic Conditions

    Takaaki SAEKI  Koji YAMAMOTO  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2126-2134

    Cooperative relaying (CR) is a promising technique to provide spatial diversity by combining multiple signals from source and relay stations. In the present paper, the impact and use of the asymmetric property in bi-directional CR under asymmetric traffic conditions are discussed assuming that CR involves one communication pair and one relay station in a time division duplex (TDD) system. The asymmetric property means that the average communication quality differs for each transmission direction because of the difference in signal power between the combined signals for each direction. First, numerical results show the asymmetric property of bi-directional CR. Next, in order to evaluate the impact of the asymmetric property, the optimal relay position and resource allocation are compared to those in simple multi-hop relaying, which does not have the asymmetric property. Numerical results show that, in order to maximize the overall quality of bi-directional communication, the optimal relay position in CR depends on the offered traffic ratio, which is defined as the traffic ratio of each transmission direction, while the offered traffic ratio does not affect the optimal relay position in multi-hop relaying. Finally, the asymmetric property is used to enhance the overall quality. Specifically, a high overall quality can be achieved by, for example, opportunistically switching to the transmission direction with higher quality. Under asymmetric traffic conditions, weighted proportionally fair scheduling (WPFS), which is proposed in the context of downlink scheduling in a cellular network, is applied to transmission direction switching. Numerical results reveal that WPFS provides a high overall quality and that the quality ratio is similar to the offered traffic ratio.

  • Improved Radiometric Based Method for Suppressing Impulse Noise from Corrupted Images

    ChangCheng WU  ChunYu ZHAO  DaYue CHEN  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:7
      Page(s):
    1936-1943

    A novel filter is introduced in this paper to improve the ability of radiometric based method on suppressing impulse noise. Firstly, a new method is introduced to design the impulsive weight by measuring how impulsive a pixel is. Then, the impulsive weight is combined with the radiometric weight to obtain the evaluated values on each pixel in the whole corrupted image. The impulsive weight is mainly designed to suppress the impulse noise, while the radiometric weight is mainly designed to protect the noise-free pixel. Extensive experiments demonstrate that the proposed algorithm can perform much better than other filters in terms of the quantitative and qualitative aspects.

  • BioEncoding: A Reliable Tokenless Cancelable Biometrics Scheme for Protecting IrisCodes

    Osama OUDA  Norimichi TSUMURA  Toshiya NAKAGUCHI  

     
    PAPER-Information Network

      Vol:
    E93-D No:7
      Page(s):
    1878-1888

    Despite their usability advantages over traditional authentication systems, biometrics-based authentication systems suffer from inherent privacy violation and non-revocability issues. In order to address these issues, the concept of cancelable biometrics was introduced as a means of generating multiple, revocable, and noninvertible identities from true biometric templates. Apart from BioHashing, which is a two-factor cancelable biometrics technique based on mixing a set of tokenized user-specific random numbers with biometric features, cancelable biometrics techniques usually cannot preserve the recognition accuracy achieved using the unprotected biometric systems. However, as the employed token can be lost, shared, or stolen, BioHashing suffers from the same issues associated with token-based authentication systems. In this paper, a reliable tokenless cancelable biometrics scheme, referred to as BioEncoding, for protecting IrisCodes is presented. Unlike BioHashing, BioEncoding can be used as a one-factor authentication scheme that relies only on sole IrisCodes. A unique noninvertible compact bit-string, referred to as BioCode, is randomly derived from a true IrisCode. Rather than the true IrisCode, the derived BioCode can be used efficiently to verify the user identity without degrading the recognition accuracy obtained using original IrisCodes. Additionally, BioEncoding satisfies all the requirements of the cancelable biometrics construct. The performance of BioEncoding is compared with the performance of BioHashing in the stolen-token scenario and the experimental results show the superiority of the proposed method over BioHashing-based techniques.

  • Parametric Packet-Layer Model for Evaluation Audio Quality in Multimedia Streaming Services

    Noritsugu EGI  Takanori HAYASHI  Akira TAKAHASHI  

     
    PAPER

      Vol:
    E93-B No:6
      Page(s):
    1359-1366

    We propose a parametric packet-layer model for monitoring audio quality in multimedia streaming services such as Internet protocol television (IPTV). This model estimates audio quality of experience (QoE) on the basis of quality degradation due to coding and packet loss of an audio sequence. The input parameters of this model are audio bit rate, sampling rate, frame length, packet-loss frequency, and average burst length. Audio bit rate, packet-loss frequency, and average burst length are calculated from header information in received IP packets. For sampling rate, frame length, and audio codec type, the values or the names used in monitored services are input into this model directly. We performed a subjective listening test to examine the relationships between these input parameters and perceived audio quality. The codec used in this test was the Advanced Audio Codec-Low Complexity (AAC-LC), which is one of the international standards for audio coding. On the basis of the test results, we developed an audio quality evaluation model. The verification results indicate that audio quality estimated by the proposed model has a high correlation with perceived audio quality.

  • Enhanced Cancelable Biometrics for Online Signature Verification

    Daigo MURAMATSU  Manabu INUMA  Junji SHIKATA  Akira OTSUKA  

     
    LETTER-Analog Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1254-1259

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  • Margin-Based Pivot Selection for Similarity Search Indexes

    Hisashi KURASAWA  Daiji FUKAGAWA  Atsuhiro TAKASU  Jun ADACHI  

     
    PAPER-Multimedia Databases

      Vol:
    E93-D No:6
      Page(s):
    1422-1432

    When developing an index for a similarity search in metric spaces, how to divide the space for effective search pruning is a fundamental issue. We present Maximal Metric Margin Partitioning (MMMP), a partitioning scheme for similarity search indexes. MMMP divides the data based on its distribution pattern, especially for the boundaries of clusters. A partitioning boundary created by MMMP is likely to be located in a sparse area between clusters. Moreover, the partitioning boundary is at maximum distances from the two cluster edges. We also present an indexing scheme, named the MMMP-Index, which uses MMMP and pivot filtering. The MMMP-Index can prune many objects that are not relevant to a query, and it reduces the query execution cost. Our experimental results show that MMMP effectively indexes clustered data and reduces the search cost. For clustered data in a vector space, the MMMP-Index reduces the computational cost to less than two thirds that of comparable schemes.

  • Can the BMS Algorithm Decode Up to Errors? Yes, but with Some Additional Remarks

    Shojiro SAKATA  Masaya FUJISAWA  

     
    LETTER-Coding Theory

      Vol:
    E93-A No:4
      Page(s):
    857-862

    It is a well-known fact that the BMS algorithm with majority voting can decode up to half the Feng-Rao designed distance dFR. Since dFR is not smaller than the Goppa designed distance dG, that algorithm can correct up to errors. On the other hand, it has been considered to be evident that the original BMS algorithm (without voting) can correct up to errors similarly to the basic algorithm by Skorobogatov-Vladut. But, is it true? In this short paper, we show that it is true, although we need a few remarks and some additional procedures for determining the Groebner basis of the error locator ideal exactly. In fact, as the basic algorithm gives a set of polynomials whose zero set contains the error locators as a subset, it cannot always give the exact error locators, unless the syndrome equation is solved to find the error values in addition.

  • Hill-Climbing Attacks and Robust Online Signature Verification Algorithm against Hill-Climbing Attacks

    Daigo MURAMATSU  

     
    PAPER

      Vol:
    E93-D No:3
      Page(s):
    448-457

    Attacks using hill-climbing methods have been reported as a vulnerability of biometric authentication systems. In this paper, we propose a robust online signature verification algorithm against such attacks. Specifically, the attack considered in this paper is a hill-climbing forged data attack. Artificial forgeries are generated offline by using the hill-climbing method, and the forgeries are input to a target system to be attacked. In this paper, we analyze the menace of hill-climbing forged data attacks using six types of hill-climbing forged data and propose a robust algorithm by incorporating the hill-climbing method into an online signature verification algorithm. Experiments to evaluate the proposed system were performed using a public online signature database. The proposed algorithm showed improved performance against this kind of attack.

  • Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    Koichi ITO  Ayumi MORITA  Takafumi AOKI  Hiroshi NAKAJIMA  Koji KOBAYASHI  Tatsuo HIGUCHI  

     
    PAPER-Image

      Vol:
    E93-A No:3
      Page(s):
    607-616

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  • Fast Surface Profiling by White-Light Interferometry Using Symmetric Spectral Optical Filter

    Akira HIRABAYASHI  

     
    PAPER-Measurement Technology

      Vol:
    E93-A No:2
      Page(s):
    542-549

    We propose a surface profiling algorithm by white-light interferometry that extends sampling interval to twice of the widest interval among those used in conventional algorithms. The proposed algorithm uses a novel function called an in-phase component of an interferogram to detect the peak of the interferogram, while conventional algorithms used the squared-envelope function or the envelope function. We show that the in-phase component has the same peak as the corresponding interferogram when an optical filter has a symmetric spectral distribution. We further show that the in-phase component can be reconstructed from sampled values of the interferogram using the so-called quadrature sampling technique. Since reconstruction formulas used in the algorithm are very simple, the proposed algorithm requires low computational costs. Simulation results show the effectiveness of the proposed algorithm.

  • Geometric BIC

    Kenichi KANATANI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:1
      Page(s):
    144-151

    The "geometric AIC" and the "geometric MDL" have been proposed as model selection criteria for geometric fitting problems. These correspond to Akaike's "AIC" and Rissanen's "BIC" well known in the statistical estimation framework. Another well known criterion is Schwarz' "BIC", but its counterpart for geometric fitting has not been known. This paper introduces the corresponding criterion, which we call the "geometric BIC", and shows that it is of the same form as the geometric MDL. Our result gives a justification to the geometric MDL from the Bayesian principle.

  • An Instantaneous Frequency Estimator Based on the Symmetric Higher Order Differential Energy Operator

    Byeong-Gwan IEM  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:1
      Page(s):
    227-232

    A generalized formulation of the instantaneous frequency based on the symmetric higher order differential energy operator is proposed. The motivation for the formulation is that there is some frequency misalignment in time when the ordinary higher order differential energy operator is used for the instantaneous frequency estimator. The special cases of the generalized formulation are also presented. The proposed instantaneous frequency estimators are compared with existing methods in terms of error performance measured in the mean absolute error. In terms of the estimation error performance, the third order instantaneous frequency estimator with the symmetrical structure shows the best result under noise free condition. Under noisy situation, the fourth order instantaneous frequency estimator with the symmetrical structure produces the best results. Application examples are provided to show the usefulness of the estimator.

  • Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    Haipeng WANG  Feng XU  Ya-Qiu JIN  Kazuo OUCHI  

     
    PAPER-Sensing

      Vol:
    E92-B No:12
      Page(s):
    3875-3882

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  • Optimization of Polarimetric Contrast Enhancement Based on Fisher Criterion

    Qiming DENG  Jiong CHEN  Jian YANG  

     
    LETTER-Sensing

      Vol:
    E92-B No:12
      Page(s):
    3968-3971

    The optimization of polarimetric contrast enhancement (OPCE) is a widely used method for maximizing the received power ratio of a desired target versus an undesired target (clutter). In this letter, a new model of the OPCE is proposed based on the Fisher criterion. By introducing the well known two-class problem of linear discriminant analysis (LDA), the proposed model is to enlarge the normalized distance of mean value between the target and the clutter. In addition, a cross-iterative numerical method is proposed for solving the optimization with a quadratic constraint. Experimental results with the polarimetric SAR (POLSAR) data demonstrate the effectiveness of the proposed method.

  • Incremental Buffer Insertion and Module Resizing Algorithm Using Geometric Programming

    Qing DONG  Bo YANG  Jing LI  Shigetoshi NAKATAKE  

     
    PAPER-Logic Synthesis, Test and Verfication

      Vol:
    E92-A No:12
      Page(s):
    3103-3110

    This paper presents an efficient algorithm for incremental buffer insertion and module resizing for a full-placed floorplan. Our algorithm offers a method to use the white space in a given floorplan to resize modules and insert buffers, and at the same time keeps the resultant floorplan as close to the original one as possible. Both the buffer insertion and module resizing are modeled as geometric programming problems, and can be solved extremely efficiently using new developed solution methods. The experimental results suggest that the the wire length difference between the initial floorplan and result are quite small (less than 5%), and the global structure of the initial floorplan are preserved very well.

301-320hit(675hit)