The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] microwave and millimeter wave technology(15hit)

1-15hit
  • A Four-Sector Shaped-Beam Antenna for 60-GHz Wireless LANs

    Yasushi MURAKAMI  Hisao IWASAKI  Tooru KIJIMA  Akihito KATO  Takeshi MANABE  Toshio IHARA  Masayuki FUJISE  

     
    PAPER-Systems

      Vol:
    E82-C No:7
      Page(s):
    1293-1300

    This paper presents a novel four-sector shaped-beam antenna suitable for base station antennas in 60-GHz wireless local area networks (LANs). The antenna has a plateau configuration, whose four side walls have four linearly arranged microstrip antennas. Each trapezoidal facet excites a shaped beam in the elevation plane in order to meet link-budget requirement between base station and remote terminal, taking account of directional patters of remote terminal antennas. Low-loss curved microstrip-line is applied to connect the three-dimensional antennas with active circuits mounted on a flat carrier plate. This antenna has been adopted as the base station antenna in 60-GHz wireless LANs. The first-stage transmission experiment confirms the usefulness of shaped-beam antennas in the 60-GHz band.

  • Low Consumption Power Application of Pulse-Doped GaAs MESFET's

    Nobuo SHIGA  Kenji OTOBE  Nobuhiro KUWATA  Ken-ichiro MATSUZAKI  Shigeru NAKAJIMA  

     
    PAPER-Quantum Electronics

      Vol:
    E80-C No:4
      Page(s):
    597-603

    The application of pulse-doped GaAs MESFET's to a power amplifier module is discussed in this paper. The epitaxial layer structure was redesigned to have a dual pulse-doped structure for power applications, achieving a sufficient gate-drain brakdown voltage with excellent linearity. The measured load-pull characteristics of the redesigned device for the minimum power consumption design was presented. This device was shown to have almost twice the power-added efficiency of a conventional ion-implanted GaAs MESFET. Two kinds of power amplifiers were designed and fabricated, achieving Pout of 28.6 dBm at IM3 of -40 dBc with Pdc of 8 W and Pout of 33.0 dBm at IM3 of -40 dBc with Pdc of 32 W, respectively.

  • Modeling on Statistical Distribution of Optimal Noise Figure in Pulse-Doped GaAs MESFET's

    Nobuo SHIGA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:10
      Page(s):
    1442-1448

    Process-related variation of optimal noise figures (Fo) in pulse-doped GaAs MESFET's is discussed in this paper. Fluctuation in gate length of the proposed devices is shown to be a dominant source of variation in noise parameters. The statistical distribution of the optimal noise figure is modeled by using the gaussian approximation of the distribution in gate length; the probability density function of Fo is derived. A comparison between the calculated results by the derived probability density function and the measured distribution of Fo showed good agreement.

  • A Linear Array Antenna Using Bifilar Helical Elements for Mobile Satellite Communications

    Masataka OHTSUKA  Yoshihiko KONISHI  Makoto MATSUNAGA  Takashi KATAGI  

     
    PAPER-Passive Devices

      Vol:
    E79-C No:5
      Page(s):
    699-704

    In this paper, authors propose a linear array antenna using two bifilar helical antenna elements placed along the helix axis to reduce beam direction movement according to frequency change. The beam direction movement of this proposed array antenna is smaller than that of a conventional bifilar helical antenna. Also, the gain of this proposed array antenna is higher than that of the conventional helical antenna for a cross point angle of radiation patterns at the different transmit and receive(Tx and Rx) frequencies. The conventional helical antenna is suitable for vehicle antennas in mobile satellite communication systems such as the MSAT system because it owns circularly polarized omni-directional radiation pattern and its thin pole form. However, this antenna has a disadvantage that the beam direction in an elevation plane moves according to frequency change. In the proposed array antenna, the beam direction movement is about 9 smaller than that of the conventional bifilar helical antenna on condition that antenna total length is 4.83 λ0, antenna diameter is 0.12 λ0, and frequency change is from 0.957f0 to 1.043f0(f0 is center frequency and λ0 is free space wavelength at f0). Also, the Tx and Rx gains of this proposed array antenna at the cross point angle between Tx and Rx beams are about 2 dB higher than that of the conventional bifilar helical antenna on the same condition.

  • Numerical Analysis of Dielectric Rod Waveguide with Corrugation of Nonintegral-Ratio Period Waves

    Hiroshi KUBO  Kimihisa FUKUSHIMA  Ikuo AWAI  

     
    PAPER

      Vol:
    E78-C No:10
      Page(s):
    1402-1408

    The dielectric rod waveguides with corrugation consisting of nonintegral-ratio period waves are investigated numerically. The leakage characteristics of HE11-type wave in the waveguide is analyzed by applying Yasuura's method. The complex propagation constants and the far field patterns are presented. The radiation pattern of a fabricated waveguide with corrugation agrees well with the calculated value. The dependence of radiation characteristics on the corrugation form is discussed. It is shown that the leakage directions and the intensity of leaky waves are controlled independently one another. The radiation pattern can be synthesized by choosing the geometric parameters of the corrugation properly.

  • Novel Architecture and MMIC's for an Integrated Front-End of a Spectrum Analyzer

    Tsutomu TAKENAKA  Atsushi MIYAZAKI  Hiroyuki MATSUURA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    911-918

    This paper proposes a novel architecture and MMICs for an integrated 2-32 GHz front-end of a spectrum analyzer. The architecture achieves miniaturization by eliminating the large YIG tracking filter and also achieves multi-octave measurement with less than one octave sweep of the first local oscillator. The MMIC's demonstrate ultra-wideband performances with reduced chip sizes by utilizing newly developed FET cells for power combination, multi-order frequency conversion, low leakage variable resistance, and active impedance translation. The MMIC's are a fundamental/harmonic frequency converter, a variable attenuator, a single-pole triple-throw switch, a single-pole double-throw switch, a distributed pre-amplifier, and an active LC lowpass filter. All the MMIC's are smaller than 1 mm2, except the pre-amplifier and the filter.

  • An Electro-Optic BFN for Array Antenna Beam Forming

    Yoshiaki KAMIYA  Yasushi MURAKAMI  Wataru CHUJO  Masayuki FUJISE  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1090-1094

    This paper proposes a new type of optically controlled BFN (beam forming network), an electro-optic BFN using an optical waveguide structure. In this BFN, antenna beam forming is performed using conventional optical variable phase shifters and conventional optical variable directional couplers. An electro-optic BFN can easily utilize monolithic integration capability that will be advantageous to microwave stabilization. In order to discuss practical applicability, microwave characteristics and beam forming characteristics were examined using an experimental BFN fabricated on a LiNbO3 substrate. Resulting from electro-optic lightwave control, linear phase shifting and variable amplitude distribution were measured at various microwave frequencies. Without any other control except for optical offset frequency locking and applying constant voltages, typical short term fluctuation in L-band microwave was measured to be within 3 degreesp-p in phase and 2.5 dBp-p in amplitude, respectively. For the first time, an electro-optic BFN was successful in performing beam forming in an L-band array antenna as well as coaxial cables. It was also verified that radiation pattern measured in 60 degree beam steering using the experimental BFN was comparable to that calculated using conventional microwave BFNs. The experimental results show the feasibility of utilizing an electro-optic BFN in future advanced microwave/millimeter-wave array antenna systems.

  • Influence of Cross-Sectional Deformation on Coplanar Waveguide Characteristics for the Use of Optical Modulator

    Xiang ZHANG  Tanroku MIYOSHI  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1766-1770

    In this paper, the influences of the cross-sectional deformation on the coplanar waveguide (CPW) characteristics for the use of Ti: LiNbO3optical modulator are presented based on quasi-static analysis. In particular, the influences of the changes in the thickness of Ti: LiNbO3 substrate and the cross-sectional shape of electrodes are studied in detail by using the finite element method proposed previously. As a result, it is found that the propagation characteristics of the dominant mode change significantly with the thickness of LiNbO3 substrate when it is less than 100 µm. It is also shown that an inverted trapezoidal deformation of the electrode cross section is promising because a wider electrode gap and thinner electrodes are available in the design of optical modulators.

  • A 10 GHz MMIC Predistortion Linearizer Fabricated on a Single Chip

    Nobuaki IMAI  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E76-C No:12
      Page(s):
    1847-1850

    A 10 GHz MMIC predistortion linearizer fabricated on a single chip is demonstrated for the first time. It employs less hybrid circuits compard with conventional devices, and is suitable for miniaturization. The total chip size of the fabricated MMIC is about 3.5 mm3.0 mm. The distortion reduction effect is examined using this linearizer. The improvement in IM3 is more than 15 dB between 10.45 GHz and 10.70 GHz, and more than 8 dB between 10.05 GHz and 10.90 GHz.

  • Optical Control of Microstrip Band Elimination filter Utilizing Semiconductor Plasma

    Yasushi HORII  Keisuke INATA  Takeshi NAKAGAWA  Sadao KURAZONO  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2082-2084

    This letter proposes a microstrip band elimination filter having an optically controlled small gap on a resonant section for the shift of the eliminated frequency range using the semiconductor plasma. The basic characteristics of this filter are analized theoretically utilizing the (FD)2TD method.

  • Optical Control of the Short Terminated Microstrip Filter utilizing Current Distribution of the Standing Wave

    Yasushi HORII  Masafumi HIRA  Takeshi NAKAGAWA  Sadao KURAZONO  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2085-2088

    For the effective control of microwaves in the frequency domain, we propose a new method utilizing current distributions of standing waves on the terminated microstrip line. We analized a short ended microstrip line using the (FD)2TD method to indicate the effectiveness of our proposal. Further we proposed an optically controlled microstrip filter as an application of this method.

  • Simplified Analysis of Coplanar Waveguide for LiNbO3 Optical Modulator by Variational Method

    Toshihide KITAZAWA  David POLIFKO  Hiroyo OGAWA  

     
    PAPER-Optical/Microwave Devices

      Vol:
    E76-C No:2
      Page(s):
    244-250

    A coplanar-type TW electrode is analyzed for the use within a Ti:LiNbO3 optical modulator. The quasistatic analysis is developed based on the variational principle and the incremental inductance formula. The anisotropy of the LiNbO3, the effect of the SiO2 buffer layer, the overlaid conductor and the electrode thickness can be taken into consideration easily by using the extended spectral domain approach (ESDA) as the formulation procedure. It is shown numerically that the TW electrodes thickness, t, and the overlay spacing, p, are as dominant as the buffer layer thickness d, i.e., the microwave effective index and the product ΔfL is affected significantly by the electrodes thickness t and the overlay spacing, whereas the product VπL is insensitive. Therefore, the introduction of the overlaid conductor and the use of thicker electrodes can be utilized effectively to achieve higher values of the figure of merit Δf/Vπ.

  • High-Power Microwave Transmit-Receive Switch with Series and Shunt GaAs FETs

    Makoto MATSUNAGA  Kazuhiko NAKAHARA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E75-C No:2
      Page(s):
    252-258

    A new monolithic transmit-receive GaAs FET switch has been developed, named the FET series-shunt connected TR switch and capable of switching high rf transmitting power. Both insertion loss and isolation limitations of this type TR switch have been analyzed using the switching cutoff frequency of the control FET, and the formula for calculating the rated power is provided. A unique feature of this switch is that the power handling of the switch is not limited by the FET gate break-down voltage but is limited by the saturation current, so higher handling power capability is available by using FETs with a larger gate periphery. A design example of the TR switch at a rated power of 8 W in the transmit mode as well as the results of an X band switch are presented.

  • Accurate Analysis of Various Planar Transmission Lines with Finite Metallization Thickness Using Eigen-Function Weighted Boundary Integral Equation Method

    Lei ZHU  Eikichi YAMASHITA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:2
      Page(s):
    259-266

    In this paper, the eigen-function weighted boundary integral epuation method (EW-BIEM) is applied to analyze the dispersion characteristics of various planar transmission lines with finite metallization thickness, such as the micro-strip lines, conductor-backed coplanar waveguides and micro-coplanar striplines for the first time. Due to the choice of the eigen-functions as weighted functions instead of Green's function, the computational time is shortened to a great extent and the singularity problems are also avoided. The difficulty in treating strip thickness can be overcome by considering the 90 edge on the strip as a 90 circular arc whose radius tends to zero. The computational results clearly demonstrate that the effects of finite strip thickness on the propagation properties of these transmission lines can be treated easily and efficiently with this method.

  • Exact Simulation of Picosecond Electrical Pulse Generation Using Nonlinear Microwave Transmission Lines

    Yongxi QIAN  Eikichi YAMASHITA  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E75-C No:1
      Page(s):
    113-116

    In this letter we study the wave propagation in a diode-equipped microstrip line and show that soliton generation at microwave frequencies is possible with monolithic fabrications of such nonlinear transmission lines. We propose that this phenomenon be utilized as a new method of obtaining ultrashort electrical pulses with picosecond durations. The perdicted soliton generation has been confirmed by computer simulations based on the harmonic balance method.