The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mutation(141hit)

81-100hit(141hit)

  • An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    Shangce GAO  Hongwei DAI  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E91-A No:8
      Page(s):
    2223-2231

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i.e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  • Fujimaki-Takahashi Squeeze: Linear Time Construction of Constraint Graphs of Floorplan for a Given Permutation

    Toshihiko TAKAHASHI  Ryo FUJIMAKI  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1071-1076

    A floorplan is a subdivision of a rectangle into rectangular faces with horizontal and vertical line segments. We call a floorplan room-to-room when adjacencies between rooms are considered. Fujimaki and Takahashi showed that any room-to-room floorplan can be represented as a permutation. In this paper, we give an O(n)-time algorithm that constructs the vertical and the horizontal constraint graphs of a floorplan for a given permutation under this representation.

  • A Subsampling-Based Digital Image Watermarking Scheme Resistant to Permutation Attack

    Chuang LIN  Jeng-Shyang PAN  Chia-An HUANG  

     
    LETTER-Image

      Vol:
    E91-A No:3
      Page(s):
    911-915

    The letter proposes a novel subsampling-based digital image watermarking scheme resisting the permutation attack. The subsampling-based watermarking schemes have drawn great attention for their convenience and effectiveness in recent years, but the traditional subsampling-based watermarking schemes are very vulnerable to the permutation attack. In this letter, the watermark information is embedded in the average values of the 1-level DWT coefficients to resist the permutation attack. The concrete embedding process is achieved by the quantization-based method. Experimental results show that the proposed scheme can resist not only the permutation attack but also some common image processing attacks.

  • Provably Secure Multisignatures in Formal Security Model and Their Optimality

    Yuichi KOMANO  Kazuo OHTA  Atsushi SHIMBO  Shinichi KAWAMURA  

     
    PAPER-Signatures

      Vol:
    E91-A No:1
      Page(s):
    107-118

    We first model the formal security model of multisignature scheme following that of group signature scheme. Second, we prove that the following three probabilistic multisignature schemes based on a trapdoor permutation have tight security; PFDH (probabilistic full domain hash) based multisignature scheme (PFDH-MSS), PSS (probabilistic signature scheme) based multisignature scheme (PSS-MSS), and short signature PSS based multisignature scheme (S-PSS-MSS). Third, we give an optimal proof (general result) for multisignature schemes, which derives the lower bound for the length of random salt. We also estimate the upper bound for the length in each scheme and derive the optimal length of a random salt. Two of the schemes are promising in terms of security tightness and optimal signature length. In appendix, we describe a multisignature scheme using the claw-free permutation and discuss its security.

  • Improved MACs from Differentially-Uniform Permutations

    Kazuhiko MINEMATSU  Toshiyasu MATSUSHIMA  

     
    PAPER-Information Security

      Vol:
    E90-A No:12
      Page(s):
    2908-2915

    This paper presents MACs that combine a block cipher and its component such as a reduced-round version. Our MACs are faster than the standard MAC modes such as CBC-MAC, and provably secure if the block cipher is pseudorandom and its component is a permutation with a small differential probability. Such a MAC scheme was recently proposed by one of authors, and we provide improvements about security and treading-off between speed and amount of preprocessing.

  • An Improved Clonal Selection Algorithm and Its Application to Traveling Salesman Problems

    Shangce GAO  Zheng TANG  Hongwei DAI  Jianchen ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:12
      Page(s):
    2930-2938

    The clonal selection algorithm (CS), inspired by the basic features of adaptive immune response to antigenic stimulus, can exploit and explore the solution space parallelly and effectively. However, antibody initialization and premature convergence are two problems of CS. To overcome these two problems, we propose a chaotic distance-based clonal selection algorithm (CDCS). In this novel algorithm, we introduce a chaotic initialization mechanism and a distance-based somatic hypermutation to improve the performance of CS. The proposed algorithm is also verified for numerous benchmark traveling salesman problems. Experimental results show that the improved algorithm proposed in this paper provides better performance when compared to other metaheuristics.

  • Binary Particle Swarm Optimization with Bit Change Mutation

    Sangwook LEE  Haesun PARK  Moongu JEON  

     
    LETTER-Optimization

      Vol:
    E90-A No:10
      Page(s):
    2253-2256

    Particle swarm optimization (PSO), inspired by social psychology principles and evolutionary computations, has been successfully applied to a wide range of continuous optimization problems. However, research on discrete problems has been done not much even though discrete binary version of PSO (BPSO) was introduced by Kennedy and Eberhart in 1997. In this paper, we propose a modified BPSO algorithm, which escapes from a local optimum by employing a bit change mutation. The proposed algorithm was tested on De jong's suite and its results show that BPSO with the proposed mutation outperforms the original BPSO.

  • Permuting and Lifting Wavelet Coding for Structured Geometry Data of 3-D Polygonal Mesh

    Akira KAWANAKA  Shuji WATANABE  

     
    PAPER-Computer Graphics

      Vol:
    E90-D No:9
      Page(s):
    1439-1447

    This paper presents a lifting wavelet coding technique with permutation and coefficient modification processes for coding the structured geometry data of 3-D polygonal mesh model. One promising method for coding 3-D geometry data is based on the structure processing of a 3-D model on a triangle lattice plane, while maintaining connectivity. In the structuring process, each vertex may be assigned to several nodes on the triangular lattice plane. One of the nodes to which a vertex is assigned is selected as a representative node and the others are called expanded nodes. Only the geometry data of the vertices at the representative nodes are required for reconstructing the 3-D model. In this paper we apply a lifting wavelet transform with a permutation process for an expanded node at an even location in each decomposition step and the neighboring representative node. This scheme arranges more representative nodes into the lower frequency band. Also many representative nodes separated from the connective expanded nodes are made to adjoin each other in lower frequency bands, and the correlation between the representative nodes will be reduced by the following decomposition process. A process is added to use the modified coefficients obtained from the coefficients of the adjacent representative nodes instead of the original coefficients in the permutation process. This has the effect of restraining increases in the decomposed coefficients with larger magnitude. Some experiments in which the proposed scheme was applied to structured geometry data of a 3-D model with complex connectivity show that the proposed scheme gives better coding performance and the reconstructed models are more faithful to the original in comparison with the usual schemes.

  • Low Complexity Encoding Based on Richardson's LDPC Codes

    Hyunseuk YOO  Chang Hui CHOE  Moon Ho LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:8
      Page(s):
    2151-2154

    The key weakness of Low-Density Parity Check codes is the complexity of the encoding scheme. The generator matrices can be made by Gaussian elimination of parity check matrices for normal block codes. Richardson succeeded in making parity bits from parity check matrices by the low density computation. In this letter, we focus on the execution of numerical experiments which show that even if the matrix D, which is the part of the Richardson's LDPC matrix, is restricted, proposed LDPC codes is lower complexity than Richardson's LDPC codes. The constraint of D results in reducing complexity from O(n + g2) to O(n) due to the omission of computing inverse matrices of φ and T in Richardson's encoding scheme. All the sub-matrices in parity check matrix are composed of Circulant Permutation Matrices based on Galois Fields.

  • A More Robust Subsampling-Based Image Watermarking

    Chih-Cheng LO  Pao-Tung WANG  Jeng-Shyang PAN  Bin-Yih LIAO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E90-D No:5
      Page(s):
    877-878

    In this letter, we propose a novel subsampling based image watermark sequentially embedding scheme to reduce the risk of common permutation attack. The image is still perceptual after watermarking, and experimental results also show its effectiveness and robustness.

  • Hamiltonian Cycles and Hamiltonian Paths in Faulty Burnt Pancake Graphs

    Keiichi KANEKO  

     
    PAPER-Algorithm Theory

      Vol:
    E90-D No:4
      Page(s):
    716-721

    Recently, research on parallel processing systems is very active, and many complex topologies have been proposed. A burnt pancake graph is one such topology. In this paper, we prove that a faulty burnt pancake graph with degree n has a fault-free Hamiltonian cycle if the number of the faulty elements is n-2 or less, and it has a fault-free Hamiltonian path between any pair of nonfaulty nodes if the number of the faulty elements is n-3 or less.

  • A Surjective Mapping from Permutations to Room-to-Room Floorplans

    Ryo FUJIMAKI  Toshihiko TAKAHASHI  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    823-828

    A floorplan is a subdivision of a rectangle into rectangular faces with horizontal and vertical line segments. Heuristic search algorithms are used to find desired floorplans in applications, including sheet-cutting, scheduling, and VLSI layout design. Representation of floorplan is critical in floorplan algorithms, because it determines the solution space searched by floorplan algorithms. In this paper, we show a surjective mapping from permutations to room-to-room floorplans. This mapping gives us a simple representation of room-to-room floorplans.

  • A High Quality Robust Digital Watermarking by Smart Distribution Technique and Effective Embedded Scheme

    Yu-Ting PAI  Shanq-Jang RUAN  

     
    PAPER-Image

      Vol:
    E90-A No:3
      Page(s):
    597-605

    In recent years, digital watermarking has become a popular technique for hiding information in digital images to help protect against copyright infringement. In this paper we develop a high quality and robust watermarking algorithm that combines the advantages of block-based permutation with that of neighboring coefficient embedding. The proposed approach uses the relationship between the coefficients of neighboring blocks to hide more information into high frequency blocks without causing serious distortion to the watermarked image. In addition, an extraction method for improving robustness to mid-frequency filter attacks is proposed. Our experimental results show that the proposed approach is very effective in achieving perceptual imperceptibility. Moreover, the proposed approach is robust to a variety of signal processing operations, such as compression (JPEG), image cropping, sharpening, blurring, and brightness adjustments. The robustness is especially evident under blurring attack.

  • How to Construct Super-Pseudorandom Permutations with Short Keys

    Tetsu IWATA  Kaoru KUROSAWA  

     
    PAPER-Symmetric Cryptography

      Vol:
    E90-A No:1
      Page(s):
    2-13

    It is known that a super-pseudorandom permutation can be constructed from a pseudorandom function f and two universal hash functions, h and h′. It is a four round Feistel permutation denoted by φ(hk,f,f,h′k′). In this paper, we show how to re-use the secret key for f in this construction. Specifically, we show that (1) the same key can be used for both h and h′, and (2) the key for h and h′can be derived from f. As a result, our construction requires only the key for f as a secret key, and it preserves computational efficiency and security. We show the full security proof of our construction. Also, we derive a similar result for a five round MISTY-type permutation.

  • Rearrangeability of Tandem Cascade of Banyan-Type Networks

    Xuesong TAN  Shuo-Yen Robert LI  

     
    PAPER-Rearrangeable Network

      Vol:
    E90-D No:1
      Page(s):
    67-74

    The cascade of two baseline networks in tandem is a rearrangeable network. The cascade of two omega networks appended with a certain interconnection pattern is also rearrangeable. These belong to the general problem: for what banyan-type network (i.e., bit-permuting unique-routing network) is the tandem cascade a rearrangeable network? We relate the problem to the trace and guide of banyan-type networks. Let τ denote the trace permutation of a 2n2n banyan-type network and γ the guide permutation of it. This paper proves that rearrangeability of the tandem cascade of the network is solely determined by the transposition τγ-1. Such a permutation is said to be tandem rearrangeable when the tandem cascade is indeed rearrangeable. We identify a few tandem rearrangeable permutations, each implying the rearrangeability of the tandem cascade of a wide class of banyan-type networks.

  • A New Class of Binary Constant Weight Codes Derived by Groups of Linear Fractional Mappings

    Jun IMAI  Yoshinao SHIRAKI  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:10
      Page(s):
    2481-2492

    Let A(n, d, w) denote the maximum possible number of code words in binary (n,d,w) constant weight codes. For smaller instances of (n, d, w)s, many improvements have occurred over the decades. However, unknown instances still remain for larger (n, d, w)s (for example, those of n > 30 and d > 10). In this paper, we propose a new class of binary constant weight codes that fill in the remaining blank instances of (n, d, w)s. Specifically, we establish several new non-trivial lower bounds such as 336 for A(64, 12, 8), etc. (listed in Table 2). To obtain these results, we have developed a new systematic technique for construction by means of groups acting on some sets. The new technique is performed by considering a triad (G, Ω, f) := ("Group G," "Set Ω," "Action f on Ω") simultaneously. Our results described in Sect. 3 are obtained by using permutations of the elements of a set that include ∞ homogeneously like the other elements, which play a role to improve their randomness. Specifically, in our examples, we adopt the following model such as (PGL2(Fq), P1(Fq), "linear fractional action of subgroups of PGL2(Fq) on P1(Fq)") as a typical construction model. Moreover, as an application, the essential examples in [7] constructed by using an alternating group are again reconstructed with our new technique of a triad model, after which they are all systematically understood in the context of finite subgroups that act fractionally on a projective space over a finite field.

  • Characteristics of Arc-Reducing Effect by Capacitor in Commutation Circuit

    Ryoichi HONBO  Youichi MURAKAMI  Hiroyuki WAKABAYASHI  Shinji UEDA  Kenzo KIYOSE  Naoki KATO  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E89-C No:8
      Page(s):
    1153-1159

    DC motors are indispensable to improve the automotive functions. Recently, 70-100 motors are installed on luxury cars and this number is increasing year by year. With the recent demand for improved fuel economy and better equipment layout, the improvement of the motor's efficiency and the minimization of the motor size are the key to enhancing the competitive edge of the products. Adopting the high-density coil is an effective method for that, but it is accompanied by the commutation inductance rise which causes the commutation arc increase. The increase of commutation arc decreases motor life, because it causes the rise of brush/commutator wear. This report describes an arc-reducing effect obtained when capacitors are built into a commutation circuit for the purpose of reducing arcing under high commutation inductance conditions. The results of an evaluation using a equivalent commutation circuit and carbon brush/carbon flat-commutator showed that although a commutation circuit with built-in capacitor generated the same arc energy as a commutation circuit without a capacitor above a certain value of residual current, it displayed an excellent arc-reducing effect below that value of residual current.

  • Attacking Subsampling-Based Watermarking

    Wei LU  Hongtao LU  Fu-Lai CHUNG  

     
    LETTER-Information Security

      Vol:
    E88-A No:11
      Page(s):
    3239-3240

    This letter describes a permutation attack (PA) to the subsampling-based watermarking scheme where the high correlations between subimages obtained by subsampling the original image are used for watermark embedding. We show that the correlations can also be easily used to attack the watermarking scheme through a simple permutation procedure, while the quality degradation of attacked watermarked image is visually acceptable. Experimental results show the efficiency of the proposed attack algorithm.

  • New Binary Constant Weight Codes Based on Cayley Graphs of Groups and Their Decoding Methods

    Jun IMAI  Yoshinao SHIRAKI  

     
    PAPER-Coding Theory

      Vol:
    E88-A No:10
      Page(s):
    2734-2744

    We propose a new class of binary nonlinear codes of constant weights derived from a permutation representation of a group that is given by a combinatorial definition such as Cayley graphs of a group. These codes are constructed by the following direct interpretation method from a group: (1) take one discrete group whose elements are defined by generators and their relations, such as those in the form of Cayley graphs; and (2) embedding the group into a binary space using some of their permutation representations by providing the generators with realization of permutations of some terms. The proposed codes are endowed with some good characteristics as follows: (a) we can easily learn information about the distances of the obtained codes, and moreover, (b) we can establish a decoding method for them that can correct random errors whose distances from code words are less than half of the minimum distances achieved using only parity checking procedures.

  • Evaluation of Damage in DNA Molecules Caused by Very-Low-Frequency Magnetic Fields Using Bacterial Cells

    Akira HAGA  Yoshiaki KUMAGAI  Hidetoshi MATSUKI  Ginro ENDO  Akira IGARASHI  Koichiro KOBAYASHI  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3249-3256

    The effect of intermediate frequency magnetic fields or, very-low-frequency magnetic fields (VLFMF) on living biological cells was investigated using a highly sensitive mutagenesis assay method. A bacterial gene expression system for mutation repair (umu system) was used for the sensitive evaluation of damage in DNA molecules. Salmonella typhimurium TA1535 (pSK1002) were exposed to VLFMF (20 kHz and 600 µT) in a specially designed magnetic field loading chamber. The experiment results showed the possibility of applying the umu assay for sensitive and effective evaluation of damage in DNA molecules. No effects from exposure to 20 kHz and 600 µT magnetic fields in terms of damage in DNA molecules were observed.

81-100hit(141hit)