The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] on-line(195hit)

61-80hit(195hit)

  • On-Line Nonnegative Matrix Factorization Method Using Recursive Least Squares for Acoustic Signal Processing Systems

    Seokjin LEE  Sang Ha PARK  Koeng-Mo SUNG  

     
    LETTER-Engineering Acoustics

      Vol:
    E94-A No:10
      Page(s):
    2022-2026

    In this paper, an on-line nonnegative matrix factorization (NMF) algorithm for acoustic signal processing systems is developed based on the recursive least squares (RLS) method. In order to develop the on-line NMF algorithm, we reformulate the NMF problem into multiple least squares (LS) normal equations, and solve the reformulated problems using RLS methods. In addition, we eliminate the irrelevant calculations based on the NMF model. The proposed algorithm has been evaluated with a well-known dataset used for NMF performance evaluation and with real acoustic signals; the results show that the proposed algorithm performs better than the conventional algorithm in on-line applications.

  • A New Calibration Algorithm Using Reference Materials for the Waveguide-Penetration Method

    Alfred KIK  Atsuhiro NISHIKATA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E94-B No:9
      Page(s):
    2549-2557

    The waveguide-penetration method is a method to measure the electrical properties of materials. In this method, a cylindrical object pierces a rectangular waveguide through a pair of holes at the centre of its broad walls. Then, the complex permittivity and permeability of the object are estimated from measured S-parameters after TRL calibration. This paper proposes a new calibration algorithm for the waveguide-penetration method. Reference materials with known electrical properties are fabricated in cylindrical shapes to fit into the holes in the waveguide and are used as calibration standards. The algorithm is formulated using the property of equal traces in similar matrices, and we show that at least two reference materials are needed to calibrate the system. The proposed algorithm yields a simpler means of calibration compared to TRL and is verified using measurements in the S-band. Also, the error sensitivity coefficients are derived. These coefficients give valuable information for the selection of reference materials.

  • QoS-Sensitive Dynamic Voltage Scaling Algorithm for Wireless Multimedia Services

    Sungwook KIM  

     
    LETTER-Network

      Vol:
    E94-B No:8
      Page(s):
    2390-2393

    The past decade has seen a surge of research activities in the fields of mobile computing and wireless communication. In particular, recent technological advances have made portable devices, such as PDA, laptops, and wireless modems to be very compact and affordable. To effectively operate portable devices, energy efficiency and Quality of Service (QoS) provisioning are two primary concerns. Dynamic Voltage Scaling (DVS) is a common method for energy conservation for portable devices. However, due to the amount of data that needs to be dynamically handled in varying time periods, it is difficult to apply conventional DVS techniques to QoS sensitive multimedia applications. In this paper, a new adaptive DVS algorithm is proposed for QoS assurance and energy efficiency. Based on the repeated learning model, the proposed algorithm dynamically schedules multimedia service requests to strike the appropriate performance balance between contradictory requirements. Experimental results clearly indicate the performance of the proposed algorithm over that of existing schemes.

  • Mobile Location Estimation in Wireless Communication Systems

    Chien-Sheng CHEN  Szu-Lin SU  Yih-Fang HUANG  

     
    LETTER

      Vol:
    E94-B No:3
      Page(s):
    690-693

    The objective of wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When signals are propagated through non-line-of-sight (NLOS) paths, the measurements at the base stations (BSs) contain large errors which result in poor detectability of an MS by the surrounding BSs. In those situations, it is necessary to integrate all available heterogeneous measurements to improve location accuracy. This paper presents hybrid methods that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to obtain a location estimate for the MS. The proposed methods mitigate the NLOS effect by using the weighted sum of the intersections between three TOA circles and the AOA line without requiring the a priori knowledge of NLOS error statistics. Numerical results show that all positioning methods offer improved estimation accuracy over those which rely on the two circles and two lines. The proposed methods always achieve better location accuracy than the Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) do, regardless of the NLOS error statistics.

  • An Online Network Price Control Scheme by Using Stackelberg Game Model

    Sungwook KIM  

     
    LETTER-Network

      Vol:
    E94-B No:1
      Page(s):
    322-325

    In this paper, a new adaptive online price control scheme is formalized based on the Stackelberg game model. To provide the most desirable network performance, the proposed scheme consists of two different control mechanisms; user-based and operator-based mechanisms. By using the hierarchical interaction strategy, control decisions in each mechanism act cooperatively and collaborate with each other to satisfy conflicting performance criteria. With a simulation study, the proposed scheme can adaptively adjust the network price to approximate an optimized solution under widely diverse network situations.

  • Provably Secure On-Line Secret Sharing Scheme

    Tatsumi OBA  Wakaha OGATA  

     
    PAPER-Secure Protocol

      Vol:
    E94-A No:1
      Page(s):
    139-149

    On-line secret sharing scheme, introduced by Cachin, is a computational variation of secret sharing scheme. It supports dynamic changing of access structures and reusable shares, by grace of public bulletin board. In this paper, first we introduce a formal model of on-line secret sharing scheme, and analyze existing on-line secret sharing schemes. As a result, it is shown that they are all vulnerable by giving concrete attacks. Next, we propose a novel on-line secret sharing scheme which is provably secure.

  • Security Analysis of Two Augmented Password-Authenticated Key Exchange Protocols

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:11
      Page(s):
    2092-2095

    An augmented PAKE (Password-Authenticated Key Exchange) protocol is said to be secure against server-compromise impersonation attacks if an attacker who obtained password verification data from a server cannot impersonate a client without performing off-line dictionary attacks on the password verification data. There are two augmented PAKE protocols where the first one [12] was proposed in the IEEE Communications Letters and the second one [15] was submitted to the IEEE P1363.2 standard working group [9]. In this paper, we show that these two augmented PAKE protocols [12], [15] (claimed to be secure) are actually insecure against server-compromise impersonation attacks. More specifically, we present generic server-compromise impersonation attacks on these augmented PAKE protocols [12],[15].

  • Location Error Detection and Compensation for IEEE 802.15.4a Networks in Indoor Environments

    Youngbae KONG  Junseok KIM  Younggoo KWON  Gwitae PARK  

     
    LETTER

      Vol:
    E93-B No:8
      Page(s):
    2077-2081

    IEEE 802.15.4a standard enables location-aided routing or topology control in ZigBee networks, since it uses time-of-arrival (TOA)-based ranging technique. However, TOA based techniques may yield location error due to the non-line-of-sight (NLOS) effects, and hence degrade the network performance. In this letter, we demonstrate the impact of NLOS on the localization performance and propose a location error detection and compensation algorithm for IEEE 802.15.4a networks. The proposed algorithm detects NLOS by using the min-max algorithm and compensates the location error by using the Kalman filter. Experimental results show that the proposed algorithm significantly reduces the localization errors in indoor environments.

  • Efficient Modelling Method for Artificial Materials Using Digital Filtering Techniques and EMC Applications

    Hiroki WAKATSUCHI  Stephen GREEDY  John PAUL  Christos CHRISTOPOULOS  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1760-1767

    This paper demonstrates an efficient modelling method for artificial materials using digital filtering (DF) techniques. To demonstrate the efficiency of the DF technique it is applied to an electromagnetic bandgap (EBG) structure and a capacitively-loaded loop the so-called, CLL-based metamaterial. Firstly, this paper describes fine mesh simulations, in which a very small cell size (0.10.10.1 mm3) is used to model the details of an element of the structures to calculate the scattering parameters. Secondly, the scattering parameters are approximated with Padé forms and then factorised. Finally the factorised Padé forms are converted from the frequency domain to the time domain. As a result, the initial features in the fine meshes are effectively embedded into a numerical simulation with the DF boundary, in which the use of a coarse mesh is feasible (1,000 times larger in the EBG structure simulation and 680 times larger in the metamaterial simulation in terms of the volumes). By employing the coarse mesh and removal of the dielectric material calculations, the heavy computational burden required for the fine mesh simulations is mitigated and a fast, efficient and accurate modelling method for the artificial materials is achieved. In the case of the EBG structure the calculation time is reduced from 3 hours to less than 1 minute. In addition, this paper describes an antenna simulation as a specific application example of the DF techniques in electromagnetic compatibility field. In this simulation, an electric field radiated from a dipole antenna is enhanced by the DF boundary which models an artificial magnetic conductor derived from the CLL-based metamaterial. As is shown in the antenna simulation, the DF techniques model efficiently and accurately large-scale configurations.

  • An RSA-Based Leakage-Resilient Authenticated Key Exchange Protocol Secure against Replacement Attacks, and Its Extensions

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1086-1101

    Secure channels can be realized by an authenticated key exchange (AKE) protocol that generates authenticated session keys between the involving parties. In, Shin et al., proposed a new kind of AKE (RSA-AKE) protocol whose goal is to provide high efficiency and security against leakage of stored secrets as much as possible. Let us consider more powerful attacks where an adversary completely controls the communications and the stored secrets (the latter is denoted by "replacement" attacks). In this paper, we first show that the RSA-AKE protocol is no longer secure against such an adversary. The main contributions of this paper are as follows: (1) we propose an RSA-based leakage-resilient AKE (RSA-AKE2) protocol that is secure against active attacks as well as replacement attacks; (2) we prove that the RSA-AKE2 protocol is secure against replacement attacks based on the number theory results; (3) we show that it is provably secure in the random oracle model, by showing the reduction to the RSA one-wayness, under an extended model that covers active attacks and replacement attacks; (4) in terms of efficiency, the RSA-AKE2 protocol is comparable to in the sense that the client needs to compute only one modular multiplication with pre-computation; and (5) we also discuss about extensions of the RSA-AKE2 protocol for several security properties (i.e., synchronization of stored secrets, privacy of client and solution to server compromise-impersonation attacks).

  • Fast Interior Point Method for MIMO Transmit Power Optimization with Per-Antenna Power Constraints

    Yusuke OHWATARI  Anass BENJEBBOUR  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1484-1493

    For multiple-input multiple-output (MIMO) precoded transmission that has individual constraints on the maximum power of each transmit antenna or a subset of transmit antennas, the transmit power optimization problem is a non-linear convex optimization problem with a high level of computational complexity. In this paper, assuming the use of the interior point method (IPM) to solve this problem, we propose two efficient techniques that reduce the computational complexity of the IPM by appropriately setting its parameters. Based on computer simulation, the achieved reductions in the level of the computational complexity are evaluated using the proposed techniques for both the fairness and the sum-rate maximization criteria assuming i.i.d Rayleigh fading MIMO channels and block diagonalization zero-forcing as a multi-user MIMO (MU-MIMO) precoder.

  • Anonymous Password-Authenticated Key Exchange: New Construction and Its Extensions

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    PAPER-Secure Protocol

      Vol:
    E93-A No:1
      Page(s):
    102-115

    An anonymous password-authenticated key exchange (anonymous PAKE) protocol is designed to provide both password-only authentication and user anonymity against a semi-honest server, who follows the protocol honestly. Very recently, Yang and Zhang have proposed a new anonymous PAKE (NAPAKE) protocol that is claimed efficient compared to the previous constructions. In this paper, we propose a very-efficient anonymous PAKE (called, VEAP) protocol that provides the most efficiency among their kinds in terms of computation and communication costs. The VEAP protocol guarantees semantic security of session keys in the random oracle model under the chosen target CDH problem, and unconditional user anonymity against a semi-honest server. If the pre-computation is allowed, both the user and the server are required to compute only one modular exponentiation, respectively. Surprisingly, this is the same computation cost of the well-known Diffie-Hellman protocol that does not provide authentication at all. In addition, we extend the VEAP protocol in two ways: the first is designed to reduce the communication costs of the VEAP protocol and the second shows that stripping off anonymity parts from the VEAP protocol results in a new PAKE protocol.

  • Mobile Location Using Improved Covariance Shaping Least-Squares Estimation in Cellular Systems

    Ann-Chen CHANG  Yu-Hong LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:9
      Page(s):
    2366-2368

    This Letter deals with the problem of non-line-of-sight (NLOS) in cellular systems devoted to location purposes. In conjugation with a variable loading technique, we present an efficient technique to make covariance shaping least squares estimator has robust capabilities against the NLOS effects. Compared with other methods, the proposed improved estimator has high accuracy under white Gaussian measurement noises and NLOS effects.

  • Statistical Mechanical Analysis of Simultaneous Perturbation Learning

    Seiji MIYOSHI  Hiroomi HIKAWA  Yutaka MAEDA  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E92-A No:7
      Page(s):
    1743-1746

    We show that simultaneous perturbation can be used as an algorithm for on-line learning, and we report our theoretical investigation on generalization performance obtained with a statistical mechanical method. Asymptotic behavior of generalization error using this algorithm is on the order of t to the minus one-third power, where t is the learning time or the number of learning examples. This order is the same as that using well-known perceptron learning.

  • Design of a Non-linear Quantizer for Transform Domain DVC

    Murat B. BADEM  Rajitha WEERAKKODY  Anil FERNANDO  Ahmet M. KONDOZ  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:3
      Page(s):
    847-852

    Distributed Video Coding (DVC) is an emerging video coding paradigm that is characterized by a flexible architecture for designing very low cost video encoders. This feature could be very effectively utilized in a number of potential many-to-one type video coding applications. However, the compression efficiency of the latest DVC implementations still falls behind the state-of-the-art in conventional video coding technologies, namely H.264/AVC. In this paper, a novel non-linear quantization algorithm is proposed for DVC in order to improve the rate-distortion (RD) performance. The proposed solution is expected to exploit the dominant contribution to the picture quality from the relatively small coefficients when the high concentration of the coefficients near zero as evident when the residual input video signal for the Wyner-Ziv frames is considered in the transform domain. The performance of the proposed solution incorporating the non-linear quantizer is compared with the performance of an existing transform domain DVC solution that uses a linear quantizer. The simulation results show a consistently improved RD performance at all bitrates when different test video sequences with varying motion levels are considered.

  • A Bottom-Up Design Approach of Critically Sampled Contourlet Transform for Efficient Image Representation

    Seisuke KYOCHI  Shizuka HIGAKI  Yuichi TANAKA  Masaaki IKEHARA  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    762-771

    In this paper, a novel design method of critically sampled contourlet transform (CSCT) is proposed. The original CT which consists of Laplacian pyramid and directional filter bank provides efficient frequency plane partition for image representation. However its overcompleteness is not suitable for some applications such as image coding, its critical sampling version has been studied recently. Although several types of the CSCT have been proposed, they have problems on their realization or unnatural frequency plane partition which is different from the original CT. In contrast to the way in conventional design methods based on a "top-down" approach, the proposed method is based on a "bottom-up" one. That is, the proposed CSCT decomposes the frequency plane into small directional subbands, and then synthesizes them up to a target frequency plane partition, while the conventional ones decompose into it directly. By this way, the proposed CSCT can design an efficient frequency division which is the same as the original CT for image representation can be realized. In this paper, its effectiveness is verified by non-linear approximation simulation.

  • Trend of Autonomous Decentralized System Technologies and Their Application in IC Card Ticket System Open Access

    Kinji MORI  Akio SHIIBASHI  

     
    INVITED SURVEY PAPER

      Vol:
    E92-B No:2
      Page(s):
    445-460

    The advancement of technology is ensured by step-by-step innovation and its implementation into society. Autonomous Decentralized Systems (ADSs) have been growing since first proposed in 1977. Since then, the ADS technologies and their implementations have interacted with the evolving markets, sciences, and technologies. The ADS concept is proposed on biological analogy, and its technologies have been advanced according to changing and expanding requirements. These technologies are now categorized into six generations on the basis of requirements and system structures, but the ADS concept and its system architecture have not changed. The requirements for the system can be divided in operation-oriented, mass service-oriented, and personal service-oriented categories. Moreover, these technologies have been realized in homogeneous system structure and, as the next step, in heterogeneous system structure. These technologies have been widely applied in manufacturing, telecommunications, information provision/utilization, data centers, transportation, and so on. They have been operating successfully throughout the world. In particular, ADS technologies have been applied in Suica, the IC card ticket system (ICCTS) for fare collection and e-commerce. This system is not only expanding in size and functionality but also its components are being modified almost every day without stopping its operation. This system and its technologies are shown here. Finally, the future direction of ADS is discussed, and one of its technologies is presented.

  • Technique to Improve the Performance of Time-Interleaved A-D Converters with Mismatches of Non-linearity

    Koji ASAMI  Takahide SUZUKI  Hiroyuki MIYAJIMA  Tetsuya TAURA  Haruo KOBAYASHI  

     
    PAPER

      Vol:
    E92-A No:2
      Page(s):
    374-380

    One method for achieving high-speed waveform digitizing uses time-interleaved A-D Converters (ADCs). It is known that, in this method, using multiple ADCs enables sampling at a rate higher than the sampling rate of the ADC being used. Degradation of the dynamic range, however, results from such factors as phase error in the sampling clock applied to the ADC, and mismatched frequency characteristics among the individual ADCs. This paper describes a method for correcting these mismatches using a digital signal processing (DSP) technique for automatic test equipment applications. This method can be applied to any number of interleaved ADCs, and it does not require any additional hardware; good correction and improved accuracy can be obtained simply by adding a little to the computing overhead.

  • Cryptanalysis and Enhancement of Modified Gateway-Oriented Password-Based Authenticated Key Exchange Protocol

    Kyung-Ah SHIM  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:12
      Page(s):
    3837-3839

    Abdalla et al. proposed a gateway-oriented password-based authenticated key exchange (GPAKE) protocol among a client, a gateway, and an authentication server, where a password is only shared between the client and the authentication server. The goal of their scheme is to securely establish a session key between the client and the gateway by the help of the authentication server without revealing any information on the password to the gateway. Recently, Byun et al. showed that Abdalla et al.'s GPAKE is insecure against undetectable on-line password guessing attacks. They also proposed a modified version to overcome the attacks. In this letter, we point out that Byun et al.'s modified GPAKE protocol is still insecure against the same attacks. We then make a suggestion for improvement.

  • A Theoretical Analysis of On-Line Learning Using Correlated Examples

    Chihiro SEKI  Shingo SAKURAI  Masafumi MATSUNO  Seiji MIYOSHI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E91-A No:9
      Page(s):
    2663-2670

    In this paper we analytically investigate the generalization performance of learning using correlated inputs in the framework of on-line learning with a statistical mechanical method. We consider a model composed of linear perceptrons with Gaussian noise. First, we analyze the case of the gradient method. We analytically clarify that the larger the correlation among inputs is or the larger the number of inputs is, the stricter the condition the learning rate should satisfy is, and the slower the learning speed is. Second, we treat the block orthogonal projection learning as an alternative learning rule and derive the theory. In a noiseless case, the learning speed does not depend on the correlation and is proportional to the number of inputs used in an update. The learning speed is identical to that of the gradient method with uncorrelated inputs. On the other hand, when there is noise, the larger the correlation among inputs is, the slower the learning speed is and the larger the residual generalization error is.

61-80hit(195hit)