The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] on-line(195hit)

121-140hit(195hit)

  • A Sub-Optimal On-Line Scheduling Algorithm with Scheduling Window

    Jae-Hong SHIM  Gihyun JUNG  Kyunghee CHOI  

     
    LETTER-Software Platform

      Vol:
    E86-B No:7
      Page(s):
    2232-2236

    The complexities of many previous scheduling algorithms for IRIS tasks are too high to apply them to practical systems handling many tasks. The high complexities stem from the fact that the algorithms perform scheduling on all tasks in a system, producing an optimal solution. As a way to reduce the complexity of scheduling, we propose a heuristic on-line scheduling algorithm that schedules the IRIS tasks only in a scheduling window, producing a sub-optimal solution. A scheduling window contains W important tasks determined by a selection policy. The performance of the proposed algorithm is verified by simulation.

  • On-Line Learning Methods for Gaussian Processes

    Shigeyuki OBA  Masa-aki SATO  Shin ISHII  

     
    LETTER-Pattern Recognition

      Vol:
    E86-D No:3
      Page(s):
    650-654

    We propose two modifications of Gaussian processes, which aim to deal with dynamic environments. One is a weight decay method that gradually forgets old data, and the other is a time stamp method that regards the time course of data as a Gaussian process. We show experimental results when these modifications are applied to regression problems in dynamic environments. The weight decay method is found to follow the environmental change by automatically ignoring the past data, and the time stamp method is found to predict linear alteration.

  • On-Line Multicasting in All-Optical Networks

    Kenta HASHIMOTO  Toshinori YAMADA  Shuichi UENO  

     
    LETTER-Theory/Models of Computation

      Vol:
    E86-D No:2
      Page(s):
    326-329

    We consider the routing for a multicast in a WDM all-optical network. We prove a min-max theorem on the number of wavelengths necessary for routing a multicast. Based on the min-max theorem, we propose an efficient on-line algorithm for routing a multicast.

  • Unified Criterion to Optimize Power Coupling at Optical GADCs with Discontinuity Interface

    Kwang-Chun HO  Hyung-Yun KONG  

     
    LETTER-Optoelectronics

      Vol:
    E85-C No:12
      Page(s):
    2136-2140

    We apply newly developed rigorous modal transmission-line theory (MTLT) to evaluate optimal design conditions on optical power coupling in grating-assisted directional couplers (GADCs) with two or three guiding channels. By defining a power distribution ratio (PDR) and coupling efficiency (CE) amenable to the rigorous analytical solutions of MTLT, we explicitly analyze the power coupling characteristics of TE modes propagating in GADCs. The numerical results reveal that the incident power is optimally coupled into the desired guiding channel if the powers of rigorous modes excited at the input boundary of grating-assisted coupler are equally partitioned.

  • Estimation of NLOS Propagation-Delay Error Improves Hybrid Mobile Station Location

    Wuk KIM  Jang-Gyu LEE  Gyu-In JEE  

     
    LETTER

      Vol:
    E85-A No:12
      Page(s):
    2877-2880

    A hybrid location system for a mobile station consists of a wireless-assisted GPS and a kind of cellular signals. This letter presents a location estimator improving the performance of the hybrid mobile station location for all terrain environments including inside or between buildings. An estimation structure eliminating non-line-of-sight propagation-delay error effectively improves location accuracy of the hybrid location system.

  • A Circuit-Modeling Perspective of Leaky-Mode Leakages in a Corner-Fed Square Patch

    Kuo-Cheng CHEN  Ching-Kuang C. TZUANG  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:8
      Page(s):
    1607-1615

    This paper chronicles the leaky-mode leakages in a corner-fed square patch. First, the measured peak RPA (relative power absorbed, 1-|S11|2-|S21|2) values of the two-port corner-fed square patch (two-port test circuit) are reported. These are 21.1%, 52.3%, 89.8% and 81.3% at 5.68 GHz, 11.76 GHz, 16.68 GHz and 22.29 GHz, respectively. Such periodicity of frequencies and the phenomenon of increasing losses at higher frequencies enable us to link these peak frequencies to leaky-mode excitations. The modal spectra of the higher-order leaky modes with a strip width of 630 mil, equal to the side length of the square patch, are obtained by the well-known space-domain integral equation method. The maximum available power gain (GA,max), obtained by simultaneously complex conjugate matched impedance at the referenced two ports of the test circuit, depicts that (1) nearly loss-free transmission parameter outside the leaky-mode regions and (2) substantial losses inside the leaky-mode regions. This result suggests that the leaky modes are the main sources causing losses for the two-port test circuit. Furthermore, the valley points of the measured and theoretical GA,max are about -7.5 dB, -9.7 dB and -12.0 dB at 10.13 GHz, 16.68 GHz and 22.29 GHz, respectively, and all are in the leaky-mode regions of the modal spectra. The one-port properties of the two-port patch with the second port opened are then investigated. The degenerated (0,N) and (N,0) modes (N=1, 2, 3 and 4), calculated by the cavity model method, fall into the strong leakage regions from the first to the fourth higher-order leaky modes. The well-known leaky line's frequency-scanning characteristics also appear in the one-port test circuit, with the angle of the main beam moving from θ=30 to θ=40 as the operating frequency is increased from 22.50 GHz to 23.75 GHz. Lastly, a two-dimensional (2-D) transmission-line model of the one-port test circuit is proposed. This model uses two orthogonal modal currents as excitations to stimulate the corner-fed square patch. At 22.60 GHz, in the fourth higher-order leaky mode (EH4) region, the current distributions obtained by the 2-D transmission-line model closely agree with those of the full-wave simulation. This consistency shows that the damped-oscillation current distributions of the corner-fed square patch at 22.60 GHz are caused significantly by the multiple reflections of the leaky mode. Furthermore, at the resonant frequencies of the patch, the tangled bound-mode resonance of the EH0 mode can enhance the leaky-mode leakages.

  • Simulations of High-Frequency Thermal Noise in Silicon-on-Insulator MOSFETs Using Distributed-Transmission-Line Model

    Daijiro SUMINO  Yasuhisa OMURA  

     
    PAPER

      Vol:
    E85-C No:7
      Page(s):
    1443-1450

    The radio-frequency thermal noise in fully-depleted (FD) silicon-on-insulator (SOI) MOSFETs and bulk MOSFETs is theoretically examined using a distributed-transmission-line model. It is shown that the thermal noise in a scaled-down SOI MOSFET is basically smaller than that in a scaled-down bulk MOSFET in a wide frequency range. In the radio-frequency range, parasitic resistances in source and drain don't yield a remarkable contribution to the difference in output thermal noise power between scaled-down bulk MOSFETs and scaled-down SOI MOSFETs. However, the output thermal noise of scaled-down SOI MOSFETs with a finite parasitic resistance is smaller than that of scaled-down bulk MOSFETs because of smaller channel capacitance.

  • The Performance of N-MSK Signals in Non-linear Channels

    Toma JAVORNIK  Gorazd KANDUS  Alister BURR  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:7
      Page(s):
    1265-1275

    We consider bandwidth-efficient modulation schemes for use on non-linear channels, such as that due to a non-linear high power amplifier (HPA) in a wireless system. Continuous Phase Modulation (CPM) schemes are known to perform well on such channels, because they have constant amplitude, but their bandwidth efficiency is low. N-MSK improves this by superposing two or more such signals, but this results in a non-constant amplitude. In this paper we investigate the performance of N-MSK on a non-linear channel, modelled using a travelling wave tube (TWT) non-linearity. We first consider the spectrum and the BER performance of N-MSK on a non-linear channel, making use of the Euclidean distance spectrum of the modulated signal. We then consider the effect of non-linear amplification on these properties. Signal spectrum was determined by simulation, since no closed-form expression is available when the effect of AM-PM conversion are included. We find that the spectrum is remarkably little affected, being only slightly broadened. BER is also evaluated by direct simulation, as well as from the Euclidean distance spectrum. The latter now exhibits a series of clusters, instead of discrete lines, and we find that at least the whole of the first cluster must be considered in calculating the BER, not just the minimum distance or the centroid of the cluster. The detector used in the simulation applies an inverse distortion function, then uses maximum-likelihood sequence estimation (MLSE) set up for the linear channel. This is no longer optimum, because the noise is distorted, and therefore it is also compared with a true MLSE detector. We find that the BER performance is, however, somewhat degraded compared to the linear channel. We determine back-off levels from saturation to optimise overall power efficiency.

  • On-Line Edge-Coloring Algorithms for Degree-Bounded Bipartite Graphs

    Masakuni TAKI  Mikihito SUGIURA  Toshinobu KASHIWABARA  

     
    LETTER

      Vol:
    E85-A No:5
      Page(s):
    1062-1065

    A kind of online edge-coloring problems on bipartite graphs is considered. The input is a graph (typically with no edges) and a sequence of operations (edge addition and edge deletion) under the restriction that at any time the graph is bipartite and degree-bounded by k, where k is a prescribed integer. At the time of edge addition, the added edge can be irrevocably assigned a color or be left uncolored. No other coloring or color alteration is allowed. The problem is to assign colors as many times as possible using k colors. Two algorithms are presented: one with competitiveness coefficient 1/4 against oblivious adversaries, and one with competitiveness coefficient between 1/4 and 1/2 with the cost of requiring more random bits than the former algorithm, also against oblivious adversaries.

  • Analytical Evaluation of Total Degradation in OFDM Systems with TWTA or SSPA

    Davide DARDARI  Velio TRALLI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:4
      Page(s):
    845-848

    In this paper an analytical parametric formulation of total degradation in Orthogonal Frequency Division Multiplexing (OFDM) systems including High Power Amplifiers (HPA) is presented. Two classes of non-linear devices are considered: Traveling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers (SSPA). In the results the accuracy of the proposed method is checked and the impact of coding to mitigate non-linear distortion is easily assessed.

  • Modelling and Design of a Broadband Predistortion Circuit for Radio-over-Fibre Systems

    Fabio ZEPPARELLI  Luca ROSELLI  Francesco AMBROSI  Roberto SORRENTINO  Pier FACCIN  Andrea CASINI  

     
    PAPER-Optical Transmission Radio on Fiber

      Vol:
    E85-C No:3
      Page(s):
    519-526

    To the aim of developing industrializable low-cost electronic techniques for the compensation of non-linearities in Radio-over-Fibre networks, a semiconductor laser circuit model and a predistortion circuit configuration have been implemented and simulated. The CAD procedure illustrated indicates the steps to obtain a broadband compensation (0.4-2 GHz) of both second- and third-order distortions.

  • Wide-Band High-Bit-Rate WDM Transmission Line with Medial Dispersion Fiber (MDF)

    Kazunori MUKASA  Takeshi YAGI  Kunio KOKURA  

     
    LETTER

      Vol:
    E85-B No:2
      Page(s):
    484-486

    A novel optical transmission line consisted of fibers characterized by positive and negative medial dispersion of NZ-DSF and SMF was designed and fabricated. Both P-MDF and N-MDF have achieved the medial dispersion and low non-linearity simultaneously. Total characteristics were confirmed to be suitable for the future high-bit-rate transmission.

  • Reliable Data Routing for Spatial-Temporal TMR Multiprocessor Systems

    Mineo KANEKO  

     
    PAPER-Fault Tolerance

      Vol:
    E84-D No:12
      Page(s):
    1790-1800

    This paper treats the data routing problem for fault-tolerant systolic arrays based on Triple Modular Redundancy (TMR) in mixed spatial-temporal domain. The number of logical links required in TMR systolic array is basically 9 times larger than the one for corresponding non-fault-tolerant systolic array. The link sharing is a promising method for reducing the number of physical links, which may, however, degrade the fault tolerance of TMR system. This paper proposes several robust data-routing and resource-sharing (plural data transfers share a physical link, or a data transfer and a computational task share a PE as a relay node for the former and as a processor for the latter), by which certain classes of fault tolerant property will be guaranteed. A stage and a dominated set are introduced to characterize the features of routing/resource-sharing in TMR systems, and conditions on the dominated set and their resultant fault-tolerant properties are derived.

  • 3D Shape Reconstruction Using Three Light Sources in Image Scanner

    Hiroyuki UKIDA  Katsunobu KONISHI  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1713-1721

    We suggest the method to recover the 3D shape of an object by using a color image scanner which has three light sources. The photometric stereo is traditional to recover the surface normals of objects using multiple light sources. In this method, it usually assumes distant light sources to make the optical models simple. But the light sources in the image scanner are so close to an object that the illuminant intensity varies with the distance from the light source, therefore these light sources should be modeled as the linear light sources. In this method, by using these models and two step algorithm; the initial estimation by the iterating computation and the optimization by the non-linear least square method, not only the surface normal but also the absolute distance from the light source to the surface can be estimated. By using this method, we can recover the 3D shape more precisely. In the experimental results, the 3D shape of real objects can be recovered and the effectiveness of the proposed method is shown.

  • Nonlinear Performance Study of Dual FDTS/DF Detector for Magnetic Recording Channels

    Ming JIN  Behrouz FARHANG-BOROUJENY  Kalahasthi C. INDUKUMAR  George MATHEW  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1176-1181

    Dual FDTS/DF detector is an advanced version of FDTS/DF detector that gives significant performance improvement over FDTS/DF scheme on linear channels, and moreover, in contrast to other dual-detector schemes, it is suitable for various d-constraint coded channels. As recording density increases, channel nonlinearities such as non-linear transition shift (NLTS) and partial erasure (PE) degrade the performance of detectors. In this paper, we use nonlinear channel models to study the BER performance of dual FDTS/DF detector and compare the performances with those of other detectors through bit-by-bit simulations. Simulation results show that the dual FDTS/DF detector is superior in performance compared to FDTS/DF and MDFE detectors even on nonlinear channels, and it gives comparable BER performance with M2DFE (adv.) on nonlinear channels. Results also indicate that the detectors on the d=1 coded channels are more robust to channel nonlinearities compared to those of other detectors (such as PRML family detectors) on the d=0 coded channels.

  • Effects of Source and Load Impedance on the Intermodulation Distortion Products of GaAs FETs

    Kwang-Ho AHN  Soong-Hak LEE  Yoon-Ha JEONG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E84-C No:8
      Page(s):
    1104-1110

    The linearity of the GaAs Field Effect Transistor (FET) power amplifier is greatly influenced by the nonlinear characteristics of gate-source capacitance (Cgs) and drain-source current (Ids) for the FETs. However, previously suggested analysis methods of GaAs FET non-linearity are mainly focused on the investigations by each individual non-linear component (Cgs or Ids) without considering both non-linear effects. We analyze more accurately the non-linearity of GaAs FETs by considering non-linear effects of Cgs and Ids simultaneously. We also investigate the third-order intermodulation distortion (IMD3) of the GaAs FET in relation to source and load impedances that minimize FET non-linearities. From the simulation results by Volterra-series technique, we show that the least IMD3 is found at the minimum source resistance (RS) and maximum load resistance (RL) in the equivalent output power (Pout) contour. Simulated results are compared with the load and source pull data, with good agreement.

  • A Pen Input On-Line Signature Verifier Integrating Position, Pressure and Inclination Trajectories

    Yoshimitsu KOMIYA  Tetsu OHISHI  Takashi MATSUMOTO  

     
    PAPER

      Vol:
    E84-D No:7
      Page(s):
    833-838

    Personal identity verification has a great variety of applications including access to computer terminals, buildings, credit card verification as well as EC. Algorithms for personal identity verification can be roughly classified into four categories depending on static/dynamic and biometric/physical or knowledge based. Finger prints, iris, retina, DNA, face, blood vessels, for instance, are static and biometric. Algorithms which are biometric and dynamic include lip movements, body movements and on-line signatures. Schemes which use passwords are static and knowledge based, whereas methods using magnetic cards and IC cards are physical. Each scheme naturally has its own advantages and disadvantages. A new algorithm is proposed for pen-input on-line signature verification incorporating pen-position, pen-pressure and pen-inclinations trajectories. A preliminary experiment is performed on a data base consisting of 293 genuine writings and 540 forgery writings, from 8 individuals. Average correct verification rate was 97.6% whereas average forgery refection rate was 98.7%. Since no fine tuning was done, this preliminary result looks very promising.

  • Enumerating the Uniform Switching System by K-Sets

    Tsutomu KAWABATA  

     
    LETTER

      Vol:
    E84-A No:5
      Page(s):
    1256-1260

    The uniform switching system is the family of non-linear n m binary arrays constrained such that all columns are from the constant weight k vectors and all rows have weights divisible by p > 0. For this system, we present a cardinality formula and an enumerative algorithm.

  • Dynamic Scheduling and Allocation in Two-Dimensional Mesh-Connected Multicomputers for Real-Time Tasks

    Seong-Moo YOO  Hee Yong YOUN  Hyunseung CHOO  

     
    PAPER-Computer Systems

      Vol:
    E84-D No:5
      Page(s):
    613-622

    Among several multiprocessor topologies, two-dimensional (2D) mesh topology has become popular due to its simplicity and efficiency. Even though a number of scheduling and processor allocation schemes for 2D meshes have been proposed in the literature, little study has been done aimed for real-time environment. In this paper, we propose an on-line scheduling and allocation scheme for real-time tasks that require the exclusive use of submeshes in 2D mesh system. By effectively manipulating the information on allocated or reserved submeshes, the proposed scheme can quickly identify the earliest available time of a free submesh for a newly arrived task. We employ a limited preemption approach to reduce the complexity of the search for a feasible schedule. Computer simulation reveals that the proposed scheme allows high throughput by decreasing the number of tasks rejected.

  • State Observers for Moore Machines and Generalized Adaptive Homing Sequences

    Koji WATANABE  Takeo IKAI  Kunio FUKUNAGA  

     
    LETTER-Theory of Automata, Formal Language Theory

      Vol:
    E84-D No:4
      Page(s):
    530-533

    Off-line state identification methods for a sequential machine using a homing sequence or an adaptive homing sequence (AHS) are well-known in the automata theory. There are, however, so far few studies on the subject of the on-line state estimator such as a state observer (SO) which is used in the linear system theory. In this paper, we shall construct such an SO for a Moore machine based on the state identification process by means of AHSs, and discuss the convergence property of the SO.

121-140hit(195hit)