The search functionality is under construction.

Keyword Search Result

[Keyword] output(287hit)

101-120hit(287hit)

  • Waveform Optimization for MIMO Radar Based on Cramer-Rao Bound in the Presence of Clutter

    Hongyan WANG  Guisheng LIAO  Jun LI  Liangbing HU  Wangmei GUO  

     
    PAPER-Sensing

      Vol:
    E95-B No:6
      Page(s):
    2087-2094

    In this paper, we consider the problem of waveform optimization for multi-input multi-output (MIMO) radar in the presence of signal-dependent noise. A novel diagonal loading (DL) based method is proposed to optimize the waveform covariance matrix (WCM) for minimizing the Cramer-Rao bound (CRB) which improves the performance of parameter estimation. The resulting nonlinear optimization problem is solved by resorting to a convex relaxation that belongs to the semidefinite programming (SDP) class. An optimal solution to the initial problem is then constructed through a suitable approximation to an optimal solution of the relaxed one (in a least squares (LS) sense). Numerical results show that the performance of parameter estimation can be improved considerably by the proposed method compared to uncorrelated waveforms.

  • Efficient List Extension Algorithm Using Multiple Detection Orders for Soft-Output MIMO Detection

    Kilhwan KIM  Yunho JUNG  Seongjoo LEE  Jaeseok KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    898-912

    This paper proposes an efficient list extension algorithm for soft-output multiple-input-multiple-output (soft-MIMO) detection. This algorithm extends the list of candidate vectors based on the vector selected by initial detection, in order to solve the empty-set problem, while reducing the number of additional vectors. The additional vectors are obtained from multiple detection orders, from which high-quality soft-output can be generated. Furthermore, a method to reduce the complexity of the determination of the multiple detection orders is described. From simulation results for a 44 system with 16- and 64-quadrature amplitude modulations (QAM) and rate 1/2 and 5/6 duo-binary convolutional turbo code (CTC), the soft-MIMO detection to which the proposed list extension was applied showed a performance degradation of less than 0.5 dB at bit error rate (BER) of 10-5, compared to that of the soft-output maximum-likelihood detection (soft-MLD) for all code rate and modulation pairs, while the complexity of the proposed list extension was approximately 38% and 17% of that of an existing algorithm with similar performance in a 44 system using 16- and 64-QAM, respectively.

  • Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    Masaki HANADA  Hidenori NAKAZATO  Hitoshi WATANABE  

     
    PAPER-Network

      Vol:
    E95-B No:2
      Page(s):
    401-414

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  • QR Decomposition-Based Antenna Selection for Spatial Multiplexing UWB Systems with Zero-Forcing Detectors Followed by Rake Combiners

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    337-340

    This letter presents a criterion for selecting a transmit antenna subset when ZF detectors followed by Rake combiners are employed for spatial multiplexing (SM) ultra-wideband (UWB) multiple input multiple output (MIMO) systems. The presented criterion is based on the largest minimum post-processing signal to interference plus noise ratio of the multiplexed streams, which is obtained on the basis of QR decomposition. Simulation results show that the proposed antenna selection algorithm considerably improves the BER performance of the SM UWB MIMO systems when the number of multipath diversity branches is not so large and thus offers diversity advantages on a log-normal multipath fading channel.

  • Noise Canceling Balun-LNA with Enhanced IIP2 and IIP3 for Digital TV Applications

    Saeed SAEEDI  Mojtaba ATARODI  

     
    PAPER-Integrated Electronics

      Vol:
    E95-C No:1
      Page(s):
    146-154

    An inductorless low noise amplifier (LNA) with active balun for digital TV (DTV) applications is presented. The LNA exploits a noise cancellation technique which allows for simultaneous wide-band impedance matching and low noise design. The matching and amplifier stages in the LNA topology perform single-ended to differential signal conversion with balanced output. The second and third-order nonlinearity of the individual amplifiers as well as the distortion caused by the interaction between the stages are suppressed to achieve high IIP2 and IIP3. A method for intrinsic cancellation of the second-order interaction is employed to reduce the dependence of the IIP3 on the frequency spacing between the interfering signals in the two-tone test of DTV tuners. Fabricated in a 0.18 µm CMOS technology, the LNA core size is 0.21 mm2. Measurements show that the LNA IIP3 and IIP2 are +12 dBm and +21 dBm, respectively. The IIP3 variation is less than 5 dB in the 10 MHz to 200 MHz frequency spacing range. A voltage gain of 14.5 dB and a noise figure below 4 dB are achieved in a frequency range from 100 MHz to 1 GHz. The LNA consumes 11 mA from a 1.8 V supply voltage.

  • Directivity Control by Asymmetrically Fed Dipole Antenna with PIN Diode Switches

    Yuuya HOSHINO  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    106-108

    A feed-point-selective, asymmetrically fed dipole antenna has been proposed for multiple-input multiple-output (MIMO) applications. By using PIN diode switches, an asymmetrical antenna feed is realized so as to control antenna directivities. The two basic requirements for MIMO antenna radiation patterns, namely, a decrease in overlap and control in direction, have been achieved. Additionally, to enhance directivities for the antenna with PIN diodes, a reflector has been introduced. The gain toward the reflector decreased by 2 dB, while the gain in the direction of the maximum gain increased by 2 dB. The developed antenna can correspond to a variable power angular spectrum (PAS).

  • Digital PID Control Forward Type Multiple-Output DC-DC Converter

    Fujio KUROKAWA  Tomoyuki MIZOGUCHI  Kimitoshi UENO  Hiroyuki OSUGA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E94-B No:12
      Page(s):
    3421-3428

    The purpose of this paper is to present the static and dynamic characteristics and a smart design approach for the digital PID control forward type multiple-output dc-dc converter. The central problem of a smart design approach is how to decide the integral coefficient. Since the integral coefficient decision depends on the static characteristics, whatever integral coefficient is selected will not be yield superior dynamic characteristics. Accordingly, it is important to identify the integral coefficient that optimizes static as well as dynamic characteristics. In proposed design approach, it set the upper and lower of input voltage and output current of regulation range. The optimal integral coefficient is decided by the regulation range of the static characteristics and the dynamic characteristics and then the smart design approach is summarized. As a result, the convergence time is improved 50% compared with the conventional designed circuit.

  • A User Scheduling with Minimum-Rate Requirement for Maximum Sum-Rate in MIMO-BC

    Seungkyu CHOI  Chungyong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3179-3182

    This letter considers a sum-rate maximization problem with user scheduling wherein each user has a minimum-rate requirement in multiple-input-multiple-output broadcast channel. The multiuser strategy used in the user scheduling is a joint transceiver scheme with block diagonal geometric mean decomposition. Since optimum solution to the user scheduling problem generally requires exhaustive search, we propose a suboptimum user scheduling algorithm with each user's minimum-rate requirement as the main constraint. In order to satisfy maximum sum-rate and minimum-rate constraints simultaneously, we additionally consider power allocation for scheduled users. Simulation results show that the proposed user scheduling algorithm, together with the user power allocation, achieves sum-rate close to the exhaustive search, while also guarantees minimum-rate requirement of each user.

  • Probabilistic Constrained Power Allocation for MISO Wiretap Channel Based on Statistical CSI-E

    Xiaojun SUN  Xiaojian LIU  Ming JIANG  Pengcheng ZHU  Chunming ZHAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3175-3178

    In this letter, we propose a power allocation scheme to optimize the ergodic secrecy rate of multiple-input single-output (MISO) fading wiretap channels with a probabilistic constraint, using the statistical channel state information (CSI) of the eavesdropper (CSI-E). The analytical expressions of the false secrecy probability are derived and used as constraints in the rate maximization problem. Moreover, we obtain a suboptimal solution by formulating the power allocation problem as a Rayleigh quotient problem.

  • Regional Diversity-Multiplexing Tradeoff

    Won-Yong SHIN  Koji ISHIBASHI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:10
      Page(s):
    2868-2871

    The concept of regional diversity-multiplexing tradeoff (DMT) is introduced by extending the asymptotic outage probability expression for multiple-input multiple-output (MIMO) channels. It is shown that for both Rayleigh and Rician MIMO channels, the regional diversity gain is a linear function of the regional multiplexing gain and that the original DMT curve can be obtained from the set of regional DMT lines. As a result, vital information for capturing both finite and infinite signal-to-noise ratio characteristics in terms of DMT is provided.

  • Diversity Analysis of MIMO Decode-and-Forward Relay Network by Using Near-ML Decoder

    Xianglan JIN  Dong-Sup JIN  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2828-2836

    The probability of making mistakes on the decoded signals at the relay has been used for the maximum-likelihood (ML) decision at the receiver in the decode-and-forward (DF) relay network. It is well known that deriving the probability is relatively easy for the uncoded single-antenna transmission with M-pulse amplitude modulation (PAM). However, in the multiplexing multiple-input multiple-output (MIMO) transmission, the multi-dimensional decision region is getting too complicated to derive the probability. In this paper, a high-performance near-ML decoder is devised by applying a well-known pairwise error probability (PEP) of two paired-signals at the relay in the MIMO DF relay network. It also proves that the near-ML decoder can achieve the maximum diversity of MSMD+MR min (MS,MD), where MS, MR, and MD are the number of antennas at the source, relay, and destination, respectively. The simulation results show that 1) the near-ML decoder achieves the diversity we derived and 2) the bit error probability of the near-ML decoder is almost the same as that of the ML decoder.

  • A Wide Tuning Range CMOS Quadrature Ring Oscillator with Improved FoM for Inductorless Reconfigurable PLL

    Ramesh K. POKHAREL  Shashank LINGALA  Awinash ANAND  Prapto NUGROHO  Abhishek TOMAR  Haruichi KANAYA  Keiji YOSHIDA  

     
    PAPER-Active Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1524-1532

    This paper presents the design and implementation of a quadrature voltage-controlled ring oscillator with the improved figure of merit (FOM) using the four single-ended inverter topology. Furthermore, a new architecture to prevent the latch-up in even number of stages composed of single-ended ring inverters is proposed. The design is implemented in 0.18 µm CMOS technology and the measurement results show a FOM of -163.8 dBc/Hz with the phase noise of -125.8 dBc/Hz at 4 MHz offset from the carrier frequency of 3.4 GHz. It exhibits a frequency tuning range from 1.23 GHz to 4.17 GHz with coarse and fine frequency tuning sensitivity of 1.08 MHz/mV and 120 kHz/mV, respectively.

  • Prerake Combining-Based Transmit Diversity UWB Systems with Pulse Amplitude and Position Modulation

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2903-2907

    In this letter, a prerake combining scheme for signal detection in ultra-wideband (UWB) multiple input single output (MISO) systems with a hybrid pulse amplitude and position modulation (PAPM) is analytically examined. For a UWB MISO system, the analytical BER performance of a prerake combining scheme with PAPM is presented in a log-normal multipath fading channel. The analytical BERs are observed to match well the simulated results for the set of parameters chosen. The prerake diversity combining UWB systems, which can significantly reduce the complexity of the receiver side compared to the rake diversity systems, improve the error performance as the number of transmit antennas increases.

  • Optimal Power Scaling for Quasi-Orthogonal Space-Time Block Codes with Power Scaling and Square Lattice Constellations

    Hoojin LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2660-2662

    Recently proposed full-rate quasi-orthogonal space-time block codes (QSTBCs) with power scaling is able to achieve full-diversity through linearly combining two adequately power scaled orthogonal space-time block codes (OSTBCs). While in our initial work we numerically derived the optimal value of the power scaling factor to achieve full-diversity, our goal in this letter is to analytically derive the optimal power scaling, especially for square lattice constellations (e.g., 4-QAM, 16-QAM, etc.) by maximizing the coding gain.

  • Efficient Pruning for Infinity-Norm Sphere Decoding Based on Schnorr-Euchner Enumeration

    Tae-Hwan KIM  In-Cheol PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2677-2680

    An efficient pruning method is proposed for the infinity-norm sphere decoding based on Schnorr-Euchner enumeration in multiple-input multiple-output spatial multiplexing systems. The proposed method is based on the characteristics of the infinity norm, and utilizes the information of the layer at which the infinity-norm value is selected in order to decide unnecessary sub-trees that can be pruned without affecting error-rate performance. Compared to conventional pruning, the proposed pruning decreases the average number of tree-visits by up to 37.16% in 44 16-QAM systems and 33.75% in 66 64-QAM systems.

  • A Closed-Loop Macro Diversity Scheme in Cooperative Multi-Point Downlink Transmission Systems

    Yingquan ZOU  Chunguo LI  Luxi YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2667-2671

    In this paper, the joint optimization issue of the cooperative precoder design is investigated for the transmission from the cooperative multi-point system to one mobile terminal. Based on the mean squared error minimization criterion, the problem is established for the cooperative precoder design. Unfortunately, this problem cannot be solved due to the block diagonal structure of the whole precoding matrix resulting from the fact that there is no data exchange among multiple base stations. In order to tackle this difficulty, the original problem is converted into an equivalent problem by stacking all of the nonzero entries in the block diagonal matrix into a long column vector. With the equivalent problem, the optimum solution is obtained in a closed-form expression by using the Lagrangian multiplier method. Numerical simulations illustrate the effectiveness of the proposed scheme in terms of bit error rate and spectral efficiency.

  • A Note on Practical Key Derivation Functions

    Shoichi HIROSE  

     
    LETTER-Cryptography and Information Security

      Vol:
    E94-A No:8
      Page(s):
    1764-1767

    In this article, we first review key derivation functions specified in NIST SP 800-108 and one proposed by Krawczyk. Then, we propose parallelizable key derivation functions obtained by modifying or using the existing schemes. We also define two measures of efficiency of key derivation functions, and evaluate their performance in terms of the two measures.

  • A Differential Input/Output Linear MOS Transconductor

    Pravit TONGPOON  Fujihiko MATSUMOTO  Takeshi OHBUCHI  Hitoshi TAKEUCHI  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    1032-1041

    In this paper, a differential input/output linear MOS transconductor using an adaptively biasing technique is proposed. The proposed transconductor based on a differential pair is linearized by employing an adaptively biasing circuit. The linear characteristic of the individual differential output currents are obtained by introducing the adaptively biased currents to terminate the differential output terminals. Using the proposed technique, the common-mode rejection ration (CMRR) becomes high. Simulation results show that the proposed technique is effective for improvement of the linearity and other performances.

  • Applying Output Feedback Integral Sliding Mode Controller to Time-Delay Systems

    Huan-Chan TING  Jeang-Lin CHANG  Yon-Ping CHEN  

     
    PAPER-Systems and Control

      Vol:
    E94-A No:4
      Page(s):
    1051-1058

    For time-delay systems with mismatched disturbances and uncertainties, this paper developed an integral sliding mode control algorithm using output information only to stabilize the system. An integral sliding surface is comprised of output vectors and an auxiliary full-order compensator. The proposed output feedback sliding mode controller can satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. When the specific linear matrix inequality has a solution, our method can guarantee the stability of the closed-loop system and satisfy the property of disturbance attenuation. Moreover, the design parameters of the controller and compensator can be simultaneously determined by the solution to the linear matrix inequality. Finally, a numerical example illustrated the applicability of the proposed scheme.

  • A Resource Allocation Scheme for Multiuser MIMO/OFDM Systems with Spatial Grouping

    Chun-Ye LIN  Yung-Fang CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    1006-1015

    A resource allocation scheme for multi-access MIMO-OFDM systems in uplink was developed to improve power and spectrum efficiency in the frequency and the space domains [1]. The scheme requires a multi-user detector in the receiver and assumes identical spatial crosscorrelation across all subcarriers for any pair of spatially separable users. However, the multi-user detection device may not exist in the receiver and the identical spatial crosscorrelation assumption may not be valid in some operational scenarios. The paper develops a scheme to remedy these problems for multi-access MIMO-OFDM systems without using multi-user detection techniques and the assumption. The proposed scheme aims at minimizing the total user transmit power while satisfying the required data rate, the maximum transmit power constraint, and the bit error rate of each user. The simulation results are presented to demonstrate the efficacy of the proposed algorithm.

101-120hit(287hit)