Taisei URAKAMI Tamami MARUYAMA Shimpei NISHIYAMA Manato KUSAMIZU Akira ONO Takahiro SHIOZAWA
The novel patch element shapes with the interdigital and multi-via structures for mushroom-type metasurface reflectors are proposed for controlling the reflection phases. The interdigital structure provides a wide reflection phase range by changing the depth of the interdigital fingers. In addition, the multi-via structure provides the higher positive reflection phases such as near +180°. The sufficient reflection phase range of 360° and the low polarization dependent properties could be confirmed by the electromagnetic field simulation. The metasurface reflector for the normal incident plane wave was designed. The desired reflection angles and sharp far field patterns of the reflected beams could be confirmed in the simulation results. The prototype reflectors for the experiments should be designed in the same way as the primary reflector design of the reflector antenna. Specifically, the reflector design method based on the ray tracing method using the incident wave phase was proposed for the prototype. The experimental radiation pattern for the reflector antenna composed of the transmitting antenna (TX) and the prototype metasurface reflector was similar to the simulated radiation pattern. The effectiveness of the proposed structures and their design methods could be confirmed by these simulation and experiment results.
This contribution introduces a novel, dielectric waveguide based, permittivity sensor. Next to the fundamental hybrid mode theory, which predicts exceptional wave propagation behavior, a design concept is presented that realizes a pseudo-transmission measurement approach for attenuating feed-side reflections. Furthermore, a transmission line length independent signal processing is introduced, which fosters the robustness and applicability of the sensor concept. Simulation and measurement results that prove the sensor concept and validate the high measurement accuracy, are presented and discussed in detail.
Hiroshi HASHIGUCHI Takumi NISHIME Naobumi MICHISHITA Hisashi MORISHITA Hiromi MATSUNO Takuya OHTO Masayuki NAKANO
This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.
Masafumi NAGASAKA Masaaki KOJIMA Hisashi SUJIKAI Jiro HIROKAWA
In December 2018, satellite broadcasting for 4K/8K ultra-high-definition television (UHDTV) will begin in Japan. It will be provided in the 12-GHz (11.7 to 12.75GHz) band with right- and left-hand circular polarizations. BSAT-4a, a satellite used for broadcasting UHDTV, was successfully launched in September 2017. This satellite has not only 12-GHz-band right- and left-hand circular polarization transponders but also a 21-GHz-band experimental transponder. The 21-GHz (21.4 to 22.0GHz) band has been allocated as the downlink for broadcasting satellite service in ITU-R Regions 1 (Europe, Africa) and 3 (Asia Pacific). To receive services provided over these two frequency bands and with dual-polarization, we implement and evaluated a dual-band and dual-circularly polarized parabolic reflector antenna fed by 12- and 21-GHz-band microstrip antenna arrays with a multilayer structure. The antenna is used to receive 12- and 21-GHz-band signals from in-orbit satellites. The measured and experimental results prove that the proposed antenna performs as a dual-polarized antenna in those two frequency bands and has sufficient performance to receive satellite broadcasts.
Suguru KOJIMA Takuji ARIMA Toru UNO
This paper proposes a low-profile unidirectional supergain antenna applicable to wireless communication devices such as mobile terminals, the Internet of Things and so on. The antennas used for such systems are required to be not only electrically low-profile but also unsusceptible to surrounding objects such as human body and/or electrical equipment. The proposed antenna achieves both requirements due to its supergain property using planar elements and a closely placed planar reflector. The primary antenna is an asymmetric dipole type, and consists of a monopole element mounted on an edge of a rectangular conducting plane. Both elements are placed on a dielectric substrate backed by the planar reflector. It is numerically and experimentally shown that the supergain property is achieved by optimizing the geometrical parameters of the antenna. It is also shown that the impedance characteristics can be successfully adjusted by changing the lengths of the ground plane element and the monopole element. Thus, no additional impedance matching circuit is necessary. Furthermore, it is shown that surrounding objects have insignificant impact on the antenna performance.
In order to obtain road information, we propose an information acquisition method using infrared laser radar by detecting 3D reflector code on roadside. The infrared laser radar on vehicle scans the 3D reflector code on guardrail. Through experiments, we show that the proposed method is able to obtain road information by detecting 3D reflector code on guardrail.
Asif AWALUDIN Josaphat TETUKO SRI SUMANTYO Koichi ITO Steven GAO Achmad MUNIR Mohd ZAFRI BAHARUDDIN Cahya EDI SANTOSA
Two wideband circularly polarized (CP) equilateral triangular slot (ETS) antennas are proposed for communication system and the Global Navigation Satellite System (GNSS) Radio Occultation (RO) sensor of the GAIA-I microsatellite. These wide slot antennas use the ring slot antenna CP generation method due to their shape. The compact antennas employ truncated corners, grounded equilateral triangular perturbation patch and branched feed line to create CP radiation. A 3-dB axial ratio bandwidth (ARBW) enhancement is achieved by inserting a pair of slits into the ETS. A parametric study on the influence of those shape modifications in reflection coefficient and axial ratio is presented. An ETS antenna for communication system of the GAIA-I is fabricated and measured, which is shown to agree well with its simulated performance by providing CP fractional bandwidth of 52%. An ETS antenna designed for the GNSS RO sensor of GAIA-I delivers 3-dB ARBW of 41.6%. The ETS antenna offers uni-directional radiation by mounting a 3D printed truncated cone reflector underneath which also enhances antenna gain.
Robert LEHMENSIEK Dirk I. L. DE VILLIERS
Predicting the receiving sensitivity of an offset Gregorian reflector system antenna requires an accurate prediction of the antenna noise temperature. Calculating the antenna noise temperature is computationally intensive especially for the electrically larger reflector systems. Using the main reflector masking technique, which removes the main reflector from the calculation domain, considerably reduces the computation cost. For an electrically smaller reflector system, diffraction effects affect the accuracy of this technique. Recently an improvement to the technique was proposed that introduces diffraction compensation correction factors. In this paper we introduce new compensation factor and interpolation techniques that improve the accuracy of the approximated antenna noise temperature calculation. The techniques are applied to several offset Gregorian reflector systems similar to those considered for the Square Kilometre Array, with various feeds and the accuracy in terms of receiving sensitivity is evaluated. The techniques can reduce the prediction error of the receiving sensitivity for frequency-invariant feeds to fractions of a percent, while maintaining a significant speed-up over direct calculations.
Dirk I. L. DE VILLIERS Robert LEHMENSIEK Marianna V. IVASHINA
Designing shaped offset Gregorian reflector systems to operate with several interchangeable feed horns, over frequency bandwidths of more than a decade, with multiple, often conflicting, performance figures of merit such as aperture efficiency, receiving sensitivity, sidelobe levels, and cross polarization isolation is a difficult optimization problem. An additional complication may be that the radiation patterns of all the feeds to be used in the system are not known at the time of the dish designs, as upgrades to the feeds may happen throughout the lifetime of large reflector systems. This paper presents a systematic parametric study to quantify the effects of the main causes of performance degradation in such a system, i.e. reflector diffraction and feed pattern variations. First, ideal Gaussian feed patterns are used in order to isolate the diffraction effects, and then the ideal patterns are varied to model the effect of using wideband feeds exhibiting radiation pattern variations over frequency. It is shown that the peak position in the shaping parameter space of the receiving sensitivity is not strongly influenced by diffraction - although the peak value is, as expected, reduced at lower frequencies. This allows similar feed patterns to be used in different frequency bands to still produce systems operating near the maximum sensitivity. When using non-ideal feed patterns it is shown that, for most performance metrics, diffraction effects dominate the feed variation performance degradation in smaller dishes. This allows possibly relaxed requirements on the radiation patterns of feeds used to illuminate electrically small reflector systems.
Masafumi NAGASAKA Susumu NAKAZAWA Shoji TANAKA
Japan Broadcasting Corporation (NHK) started test satellite broadcasting of ultra-high-definition television (UHDTV) on August 1st, 2016. The test broadcasting is being provided in the 12-GHz (11.7 to 12.75GHz) band with right-hand circular polarization. In 2018, left-hand circular polarization in the same frequency band will be used for satellite broadcasting of UHDTV. Because UHDTV satellite broadcasting uses the 16APSK modulation scheme, which requires a higher carrier-to-noise ratio than that used for HDTV in Japan, it is important to mitigate the cross-polarization interference. Therefore, we fabricated and tested a dual-circularly polarized offset parabolic reflector antenna that has a feed antenna composed of a 2×2 microstrip antenna array, which is sequentially rotated to enhance the polarization purity. Measured results showed that the fabricated antenna complied with our requirements, a voltage standing wave ratio of less than 1.4, antenna gain of 34.5dBi (i.e., the aperture efficiency was 69%), and cross-polarization discrimination of 28.7dB.
Norikazu KAWAGISHI Kenta ONUKI Hirotsugu YAMAMOTO
This paper reports on the relationships between the performance of retro-reflectors and the sharpness of an aerial image formed with aerial imaging by retro-reflection (AIRR). We have measured the retro-reflector divergence angle and evaluated aerial image sharpness by use of the contrast-transfer function. It is found that the divergence angle of the retro-reflected light is strongly related to the sharpness of the aerial image formed with AIRR.
Masazumi UEBA Akihiro MIYASAKA Yoshinori SUZUKI Fumihiro YAMASHITA
Communications satellites have been the primary mission from the early period of Japanese space development and their on-board communication equipment are the core devices to realize satellite communications systems. The technologies for this equipment have been developed to meet the requirements of high capacity and high functionality under the severe satellite-imposed constraints. This paper summarizes progress in on-board communication equipment technologies developed and verified by using Engineering Test Satellites and commercial satellites in Japan and describes their prospects.
Takashi TOMURA Michio TAKIKAWA Yoshio INASAWA Hiroaki MIYASHITA
Shaped beam reflector antennas are widely used because they can achieve a shaped beam even with a single primary feed. Because coverage shapes depend on service areas, optimum primary radiators and reflector shapes are determined by the service areas. In this paper, we propose a simultaneous optimal design method of the primary radiator and reflector for the shaped beam antenna. Particle swarm optimization and the conjugate gradient method are adopted to optimize the primary radiator and reflector. The design method is applied to Japan coverage to verify its effectiveness.
Rabia YAHYA Akira NAKAMURA Makoto ITAMI Tayeb A. DENIDNI
In this paper, we propose a technique to improve the gain of ultra wide-band (UWB) planar antennas by using low profile reflectors based on frequency selective surfaces (FSS). This technique not only enhances the gain of the planar UWB antennas but also guarantees a constant gain with weak variation across the entire UWB while keeping their attractive merits such as planar structure and easy fabrication. An UWB coplanar waveguide (CPW) fed antenna is installed above the proposed reflectors, to prove the effectiveness of the proposed technique. As a result, a constant gain is achieved across a very large bandwidth.
Michio TAKIKAWA Yoshio INASAWA Hiroaki MIYASHITA Izuru NAITO
We investigate a phased array-fed dual reflector antenna applying one-dimensional beam-scanning of the center-fed type, using an elliptical aperture to provide wide area observation. The distinguishing feature of this antenna is its elliptical aperture shape, in which the aperture diameter differs between the forward satellite direction and the cross-section orthogonal to it. The shape in the plane of the forward satellite direction, which does not have a beam-scanning function, is a ring-focus Cassegrain antenna, and the shape in the plane orthogonal to that, which does have a beam-scanning function, is an imaging reflector antenna. This paper describes issues which arose during design of the elliptical aperture shape and how they were solved, and presents design results using elliptical aperture dimensions of 1600 mm × 600 mm, in which the beam width differs by more than two times in the orthogonal cross-section. The effectiveness of the antenna was verified by fabricating a prototype antenna based on the design results. Measurement results confirmed that an aperture efficiency of 50% or more could be achieved, and that a different beam width was obtained in the orthogonal plane in accordance with design values.
Shinya KITAGAWA Ryosuke SUGA Kiyomichi ARAKI Osamu HASHIMOTO
Vertical- and horizontal-polarization RCS of a dipole antenna was reduced using a switchable reflector. The switchable reflector can switch reflection level for the vertical-polarization and have absorption for the horizontal-polarization. The reflection level of the reflector for the vertical-polarization can be switched using pin diodes and the reflection for the horizontal-polarization can be reduced using resistor on the surface. The switchable reflector was designed to operate at 9 GHz and fabricated. The vertical-polarized reflection coefficient was switched -28 dB with OFF-state diodes and -0.7 dB with ON-state diodes, and horizontal-polarized one was less than -18 dB at 9 GHz. The reflector with ON-state diodes was applied to an antenna reflector of a dipole antenna and comparable radiation pattern to that with a metal reflector was obtained at 9 GHz. Moreover the reflector with OFF-state diodes was applied to the reflector of the dipole antenna and the RCS of the dipole antenna was reduced 18 dB for the vertical-polarization and 16 dB for the horizontal-polarization. Therefore the designed switchable reflector can contribute to antenna RCS reduction for dual-polarization at the operating frequency without degrading antenna performance.
Tomotaka WADA Yusuke SHIKIJI Keita WATARI Hiromi OKADA
In recent years, there are many collision accidents between vehicles due to human errors. As one of countermeasures against the collision accidents, automotive radar systems have been supporting vehicle drivers. By the automotive radar mounted on the vehicle, it is possible to recognize the situation around the vehicle. The ranging with automotive infrared laser radar is very accurate, and able to understand the object existence in the observation around the vehicle. However, in order to grasp the situation around the vehicle, it is necessary to be aware of the attribute of the detected object. The information obtained by the automotive radar vehicle is only the direction and the distance of the object. Thus, the recognition of the attribute of the detected object is very difficult. In this paper, we propose a novel vehicle information acquisition method by using 2D reflector code. Through experiments, we show that the proposed method is able to detect 2D reflector code and is effective for vehicle information acquisition.
Michio TAKIKAWA Yoshio INASAWA Hiroaki MIYASHITA Izuru NAITO
We propose a novel phased array-fed dual-reflector antenna that reduces performance degradation caused by multiple reflection. The marked feature of the proposed configuration is that different reflector profiles are employed for the two orthogonal directions. The reflector profile in the beam-scanning section (vertical section) is set to an imaging reflector configuration, while the profile in the orthogonal non-beam-scanning section (horizontal section) is set to a ring-focus Cassegrain antenna configuration. In order to compare the proposed antenna with the conventional antenna in which multiple reflection was problematic, we designed a prototype antenna of the same size, and verified the validity of the proposed antenna. The results of the verification were that the gain in the designed central frequency increased by 0.4 dB, and the ripple of the gain frequency properties that was produced by multiple reflection was decreased by 1.1,dB. These results demonstrated the validity of the proposed antenna.
Shinya KITAGAWA Ryosuke SUGA Osamu HASHIMOTO
A switchable microwave reflector, reflection of which is actively controlled using diodes was proposed. Pin diodes have large resistance and capacitance without DC bias and small resistance and inductance with DC bias in microwave band. The reflector was designed by using the characteristics. In this paper, effects of a periodic structure on the reflector were verified with simulation and equivalent circuit model. A prototype reflector was able to switch between about $-20$ dB and $-0.1$ dB reflection coefficient at 2 GHz.
Kenji KINTAKA Ryotaro MORI Tetsunosuke MIURA Shogo URA
A new wavelength-selective optical modulator was proposed and discussed. The modulator consists of three kinds of distributed Bragg reflectors (DBRs) integrated in a single straight waveguide. The waveguide can guide TE$_0$ and TE$_1$ modes, and an in-line Michelson interferometer is constructed by the three DBRs. An operation-wavelength wave among incident wavelength-division-multiplexed TE$_1$ guided waves is split into TE$_0$ and TE$_1$ guided waves by one of DBRs, and combined by the same DBR to be TE$_0$ output wave with interference after one of waves is phase-modulated. A modulator using an electro-optic (EO) polymer is designed, and the static performance was predicted theoretically. An operation principle was confirmed experimentally by a prototype device utilizing a thermo-optic effect instead of the EO effect.