Yu-Chen KUO Wen-Tien YEH Ching-Sung CHEN Ching-Wen CHEN
The AODV routing protocol, which is simple and efficient, is often used in wireless sensor networks to transmit data. The AODV routing protocol constructs a path from the source node, which detects the target, to the sink node. Whenever the target moves, the path will be reconstructed and the RREQ packet will be broadcasted to flood the wireless sensor network. The localization repair routing protocol sets up a reconstruction area and restricts the broadcast of the RREQ packet to that area to avoid broadcast storm. However, this method cannot reconstruct the path once the target moves out of the reconstruction area. In this paper, we propose a lightweight routing protocol for mobile target detection. When the path breaks because of the movement of the target, the nodes can repair the path effectively using the presented routing information to achieve the lightweight effect.
Currently, there are various routing methods that consider the energy in a wireless sensor environment. The algorithm we consider is a low-rate wireless personal area network, viz., 802.15.4, and ZigBee routing network. Considering, the overall organization of the network energy efficiency, we suggest a logical position exchange (LPE) algorithm between specified nodes. Logical positioning means connecting high sub-networks and low sub-networks based on the neighbor nodes information of the address ID, and depth in the ZigBee tree topology network. When one of the nodes of the tree topology network, which is responsible for connecting multiple low sub-networks and high sub-networks, has difficulty performing its important roles in the network, because of energy exhaustion, it exchanges essential information and entrusts logical positioning to another node that is capable of it. A partial change in the logical topology enhances the energy efficiency in the network.
Mario ARZAMENDIA Kazuo MORI Katsuhiro NAITO Hideo KOBAYASHI
This paper proposes a medium access control (MAC) mechanism for the recently developed IEEE 802.15.4 standard, a promising candidate to become the physical (PHY) and MAC layer standard for Wireless Sensor Networks (WSNs). The main concern in WSNs is the energy consumption, and this paper presents a mechanism that adapts properly the duty cycle operation according to the traffic conditions. Various traffic adaption mechanisms have been presented for the MAC layer of the IEEE 802.15.4. However these conventional mechanisms only consider the temporal traffic fluctuations. The proposed mechanism outperforms the conventional mechanism when applied to cluster-tree based WSNs, because it considers not only the temporal fluctuations but also the spatial (geographical) fluctuations, which are intrinsic characteristics of traffic in WSNs with the cluster tree topology. Evaluations showed that the proposed mechanism achieves less energy consumption than the conventional traffic adaptation mechanism, with maintaining almost the same transmission performance.
Youn-Hee HAN Heon-Jong LEE Sung-Gi MIN
Random scattering of sensors may cause some location not to be covered. In such a case, it is useful to make use of mobile sensors that can move to eliminate the coverage holes. Wang et al [1]. proposed self-deployment schemes of mobile sensors by using Voronoi polygon. However, some coverage holes still remain after the execution of the schemes. We propose a new self-deployment scheme using the centroid (geometric center) of each sensor's Voronoi polygon as the moving target position. The performance evaluation shows that the proposed scheme achieves better results than the existing schemes in terms of fast coverage expansion.
Erica C. RUIZ Luis VILLASENOR-GONZALEZ Jose R. GALLARDO Adolfo ESPINOZA-RUIZ
Wireless Sensor and Actor Networks (WSAN) are commonly used to monitor physical parameters and execute opportune actions in response to specific events. In order to achieve this goal it is necessary to implement efficient coordination and cooperation among the network nodes (i.e. sensors and actors) with the aim of reducing the energy consumption and improving the response time of the system. This work propose a clustering mechanism that organizes the sensor nodes to form clusters where the mobile actors nodes in the WSAN perform the cluster head role. The proposal considers the mobility aspect of the actor nodes and implements a mechanism to dynamically change the geographical location of the actors while trying to reduce the load in terms of the number of sensors within each cluster, all this with the aim of extending the network lifetime.
Kuniaki KAWABATA Takafumi KOBAYASHI Fumiaki TAKEMURA Hideo SATO Tsuyoshi SUZUKI
This manuscript reported basic examination results of the wireless network communication performance at the coast. We consider that underwater environment condition monitoring is a sort of likely typical application for ubiquitous sensor networks. The result of the experiment shows the performance of the wireless network communication at the coastal area.
Pablo Rosales TEJADA Jae-Yoon JUNG
Ubiquitous technologies such as sensor network and RFID have enabled companies to realize more rapid and agile manufacturing and service systems. In this paper, we addresses how the huge amount of real-time events coming from these devices can be filtered and integrated to business process such as manufacturing, logistics, and supply chain process. In particular, we focus on complex event processing of sensor and RFID events in order to integrate them to business rules in business activities. We also illustrate a ubiquitous event processing system, named ueFilter, which helps to filter and aggregate sensor event, to detect event patterns from sensors and RFID by means of event pattern languages (EPL), and trigger event-condition-action (ECA) in logistics processes.
Processing structures required in sensing are designed to convert real-world information into useful information, and there are various restrictions and performance goals depending on physical restrictions and the target applications. On the other hand, network technologies are mainly designed for data exchange in the information world, as is seen in packet communications, and do not go well with sensing structures from the viewpoints of real-time properties, spatial continuity, etc. This indicates the need for understanding the architectures and restrictions of sensor technologies and network technologies when aiming to fuse these technologies. This paper clarifies the differences between these processing structures, proposes some issues to be addressed in order to achieve real fusion of them, and presents future directions toward real fusion of sensor technologies and network technologies.
Xiaohan LIU Hideo MAKINO Kenichi MASE
The need for efficient movement and precise location of robots in intelligent robot control systems within complex buildings is becoming increasingly important. This paper proposes an indoor positioning and communication platform using Fluorescent Light Communication (FLC) employing a newly developed nine-channel receiver, and discusses a new location estimation method using FLC, that involves a simulation model and coordinate calculation formulae. A series of experiments is performed. Distance errors of less than 25 cm are achieved. The enhanced FLC system yields benefits such as greater precision and ease of use.
A new best-relay selection scheme is proposed in this letter in order to maintain a reliable cooperative communications for ubiquitous sensor networks in indoor environments. The suggested technique relies on eigenvalue decomposition to select the best relay. The simulation results confirm that the performance of the proposed approach is better than that of the previous scheme in indoor environments.
Chinnapat SERTTHIN Tomoaki OHTSUKI Masao NAKAGAWA
The authors focus on the improvement of Visible Light Communication Identification (VLID) system that provides positioning information via LED light bulb, which is a part of Visible Light Communication (VLC) system. The conventional VLID system provides very low positioning estimation accuracy at room level. In our approach, neither additional infrastructure nor modification is required on the transmitter side. On the receiver side, 6-axis sensor is embedded to provide 3-axis of Azimuth and 3-axis of Tilt angulations information to perform positioning estimation. We verify the proposed system characteristics by making both empirical and numerical analysis, to confirm the effectiveness of proposed system. We define two words to justify the characteristic of the proposed system, which are Field-of-View (FOV: ψc) Limit and Sensitivity (RXS) Limit. Both FOV and Sensitivity Limits have crucial impact on positioning estimation accuracy. Intuitively, higher positioning accuracy can be achieved with smaller FOV configuration in any system that has FOV. Conversely, based on system characteristics of VLID, we propose a positioning estimation scheme, namely Switching Estimated Receiver Position (SwERP) yields high accuracy even with wide FOV configuration. Cumulative Distribution Function (CDF) of error distance and Root Mean Square of Error Distance (RMSED) between experimental positions and estimated receiver positions are used to indicate the system performance. We collected 440 samples from 3 receivers' FOV configurations altogether 1320 samples within the experimental area of 1200 mm5000 mm2050 mm. The results show that with the proposed scheme, the achievable RMSEDs are in the range of 298 and 463 mm under different FOV configurations, which attained the maximum accuracy improvement over 80% comparing to the one without positioning estimation scheme. The proposed system's achievable accuracy does not depend on transmitters' orientation; only one transmitter is required to perform positioning estimation.
Junseok KIM Jongho SHIN Younggoo KWON
Developing an adaptive 3-dimensional (3D) topology control algorithm is important because most wireless nodes are mobile and deployed in buildings. Moreover, in buildings, wireless link qualities and topologies change frequently due to various objects and the interference from other wireless devices. Previous topology control algorithms can suffer significant performance degradation because they only use the Euclidean distance for the topology construction. In this paper, we propose a novel adaptive 3D topology control algorithm for wireless ad-hoc sensor networks, especially in indoor environments. The proposed algorithm adjusts the minimum transmit power adaptively with considering the interference effect. To construct the local topology, each node divides the 3D space, a sphere centered at itself, into k equal cones by using Platonic solid (i.e., regular k-hedron) and selects the neighbor that requires the lowest transmit power in each cone. Since the minimum transmit power values depend on the effect of interferences, the proposed algorithm can adjust topology adaptively and preserve the network connectivity reliably. To evaluate the performance of algorithms, we conduct various experiments with simulator and real wireless platforms. The experimental results show that the proposed algorithm is superior to the previous algorithms in terms of the packet delivery ratio and the energy consumption with relatively low complexity.
Ting ZHU Ziguo ZHONG Yu GU Tian HE Zhi-Li ZHANG
Slow development in battery technology and rapid advances in ultra-capacitor design have motivated us to investigate the possibility of using capacitors as the sole energy storage for wireless sensor nodes to support ubiquitous computing. The starting point of this work is TwinStar, which uses ultra-capacitor as the only energy storage unit. To efficiently use the harvested energy, we design and implement feedback control techniques to match the activity of sensor nodes with the dynamic energy supply from environments. We conduct system evaluation by deploying sensor devices under three typical real-world settings -- indoor, outdoor, and mobile backpack under a wide range of system settings. Results indicate our feedback control can effectively utilize energy and ensure system sustainability. Nodes running feedback control have longer operational time than the ones running non-feedback control.
In clustered sensor networks, because CHs (Cluster Heads) are the collection points of data, they are likely to be compromise targets of attackers. So, they need to be changed through a CH election scheme as frequently as possible. Besides, because the compromised nodes must try to become a CH, a CH election scheme should prevent them from being a CH. This paper presents a secure CH election scheme for clustered sensor networks, which changes the CH role nodes securely by excluding the compromised nodes from CH candidates. In the proposed scheme, each node gives marks for behavior of all other nodes in the same CH election region and exchanges the mark list with them. Then, each node computes the average marks for all nodes in the region, and nodes whose average mark is less than a specific threshold are excluded from CH candidates. A CH is elected among the remaining candidates. Simulation results show that our scheme provides strong resilience against misbehavior of compromised nodes and reduces energy consumption of nodes. Another simulation results show that our scheme well operates in the environment where some packets are often lost.
Takaya YAMAZATO Koji NAKAO Hiraku OKADA Masaaki KATAYAMA
We consider a distributed transmission of data packet to a sink where the distance of a sensor node to a sink is much longer than the maximum communication range of each sensor node. We give a simple modification to the transmitter, i.e., multiplication of random phase before the transmission. Thanks to Turbo Code, it is possible to extend the transmission range as the received amplitude varies symbol by symbol for our scheme while whole data packet may be lost for the conventional scheme. In this letter, we report the experimental results of our scheme equivalently developed using visible light communication.
Bing ZHANG Toshifumi OOTA Azman-Osman LIM Youiti KADO
Two-dimensional (2D) communication is a novel physical communication form that utilizes the surface as a communication medium to provide both data and power transmission service to the sensor devices placed on the surface's top. In previous works, we developed 2D communication systems that utilize separated channels for data and power transmission. Though this assignment of different channels can achieve strong network performance, the sensor devices must be equipped with two or more interfaces to simultaneously receive the power and data signals, which significantly complicates and enlarges those devices. Moreover, when a channel is used for the power supply, it not only continually monopolizes the wireless frequency resource, it is also likely to cause interference with the other signal source in the case of the input power continually being sent out above a certain level. In this paper, we develop a novel 2D communication sensor system by using a single-carrier frequency for both power and data transmission, equipped with the wireless module for the two together in a compact body. To enable a sensor node that concurrently receives energy and data communication, we propose an enhancement scheme based on the IEEE802.15.4 MAC protocol standard. Through both computer simulation and actual measurement of the output power, we evaluate the performance of power supply and data transmission over the developed 2D communication sensor system.
Seulki LEE Jerald YOO Hoi-Jun YOO
A Real-time Capacitor Compensation (RCC) scheme is proposed for low power and continuous communication in the wearable inductive coupling transceiver. Since inductance values of wearable inductor vary dynamically with deterioration of its communication characteristics, the inductance value is monitored and its resonance frequency is adjusted by additive parallel/serial capacitors in real time. RLC Bridge for detection of the inductance variations and the Dual-edge Sampling Comparator for recognition of the variance direction are proposed. It is implemented in a 0.18 µm CMOS technology, and it occupies a 12.7 mm2 chip area. The proposed transceiver consumes only 426.6 µW at 4 Mbps data rate. The compensation time takes 4.78 µs, including 3 µs of detection and 1.78 µs for compensation process in worst case.
Jae-Joon LEE Bhaskar KRISHNAMACHARI C.-C. Jay KUO
In practical settings of wireless sensor networks, it is often feasible to consider heterogeneous deployments of devices with different capabilities. Under prescribed cost constraints, we analyze such heterogenous deployments and present how they impact the coverage of a sensor network including spatial correlation effect. We derive expressions for the heterogeneous mixture of devices that maximizes the lifetime coverage in both single-hop direct and multi-hop communication models. Our results show that using an optimal mixture of many inexpensive low-capability devices and some expensive high-capability devices can significantly extend the duration of a network's sensing performance, especially in a network with low spatial correlation.
Md. Abdur RAZZAQUE Choong Seon HONG Sungwon LEE
This paper presents an autonomous traffic engineering framework, named ATE, a highly efficient data dissemination mechanism for multipath data forwarding in Wireless Sensor Networks (WSNs). The proposed ATE has several salient features. First, ATE utilizes three coordinating schemes: an incipient congestion inference scheme, an accurate link quality estimation scheme and a dynamic traffic diversion scheme. It significantly minimizes packet drops due to congestion by dynamically and adaptively controlling the data traffic over congested nodes and/or poorer quality links, and by opportunistically exploiting under-utilized nodes for traffic diversion, while minimizing the estimation and measurement overhead. Second, ATE can provide with high application fidelity of the network even for increasing values of bit error rates and node failures. The proposed link quality estimation and congestion inference schemes are light weight and distributed, improving the energy efficiency of the network. Autonomous Traffic Engineering has been evaluated extensively via NS-2 simulations, and the results have shown that ATE provides a better performance with minimum overhead than those of existing approaches.
Youngbae KONG Younggoo KWON Gwitae PARK
In wireless sensor networks (WSNs), geographic routing algorithms can enhance the network capacity. However, in real WSNs, it is difficult for each node to know its physical location accurately. Geographic routing with location errors may produce serious problems such as disconnected links and data transmission delays. In this letter, we present an efficient location error compensation algorithm for the geographic routing. The proposed algorithm efficiently detects and corrects the location errors and significantly enhances the network performance of geographic routing in the presence of location errors.