The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] shaping(60hit)

21-40hit(60hit)

  • ISI-Free Power Roll-Off Pulse

    Masayuki MOHRI  Masanori HAMAMURA  

     
    LETTER-Communication Theory

      Vol:
    E92-A No:10
      Page(s):
    2495-2497

    An ISI-free power roll-off pulse, the roll-off characteristic of which is tunable with one power parameter, is proposed. It is shown that the proposed pulse is advantageous in terms of the probability of error for pulse detection in the presence of a timing error among currently known good pulses, among which the raised cosine pulse, "better than" raised cosine pulse, and polynomial pulse are considered.

  • Mobile Location Using Improved Covariance Shaping Least-Squares Estimation in Cellular Systems

    Ann-Chen CHANG  Yu-Hong LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:9
      Page(s):
    2366-2368

    This Letter deals with the problem of non-line-of-sight (NLOS) in cellular systems devoted to location purposes. In conjugation with a variable loading technique, we present an efficient technique to make covariance shaping least squares estimator has robust capabilities against the NLOS effects. Compared with other methods, the proposed improved estimator has high accuracy under white Gaussian measurement noises and NLOS effects.

  • A 100 Mbps, 4.1 pJ/bit Threshold Detection-Based Impulse Radio UWB Transceiver in 90 nm CMOS

    Lechang LIU  Yoshio MIYAMOTO  Zhiwei ZHOU  Kosuke SAKAIDA  Jisun RYU  Koichi ISHIDA  Makoto TAKAMIYA  Takayasu SAKURAI  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    769-776

    A novel DC-to-960 MHz impulse radio ultra-wideband (IR-UWB) transceiver based on threshold detection technique is developed. It features a digital pulse-shaping transmitter, a DC power-free pulse discriminator and an error-recovery phase-frequency detector. The developed transceiver in 90 nm CMOS achieves the lowest energy consumption of 2.2 pJ/bit transmitter and 1.9 pJ/bit receiver at 100 Mbps in the UWB transceivers.

  • Effect of Pulse Shaping Filters on a Fractional Sampling OFDM System with Subcarrier-Based Maximal Ratio Combining

    Mamiko INAMORI  Takashi KAWAI  Tatsuya KOBAYASHI  Haruki NISHIMURA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1484-1494

    In this paper, the effect of the impulse response of pulse shaping filters on a fractional sampling orthogonal frequency division multiplexing (FS OFDM) system is investigated. FS achieves path diversity with a single antenna through oversampling and subcarrier-based maximal ratio combining (MRC). Though the oversampling increases diversity order, correlation among noise components may deteriorate bit error rate (BER) performance. To clarify the relationship between the impulse response of the pulse shaping filter and the BER performance, five different pulse shaping filters are evaluated in the FS OFDM system. Numerical results of computer simulations show that the Frobenius norm of a whitening matrix corresponding to the pulse shaping filter has significant effect on the BER performance especially with a small numbers of subcarriers. It is also shown that metric adjustment based on the Frobenius norm improves BER performance of the coded FS OFDM system.

  • A Subtractive-Type Speech Enhancement Using the Perceptual Frequency-Weighting Function

    Seiji HAYASHI  Hiroyuki INUKAI  Masahiro SUGUIMOTO  

     
    PAPER-Speech and Hearing

      Vol:
    E92-A No:1
      Page(s):
    226-234

    The present paper describes quality enhancement of speech corrupted by an additive background noise in a single-channel system. The proposed approach is based on the introduction of a perceptual criterion using a frequency-weighting filter in a subtractive-type enhancement process. Although this subtractive-type method is very attractive because of its simplicity, it produces an unnatural and unpleasant residual noise. Thus, it is difficult to select fixed optimized parameters for all speech and noise conditions. A new and effective algorithm is thus developed based on the masking properties of the human ear. This newly developed algorithm allows for an automatic adaptation in the time and frequency of the enhancement system and determines a suitable noise estimate according to the frequency of the noisy input speech. Experimental results demonstrate that the proposed approach can efficiently remove additive noise related to various kinds of noise corruption.

  • Construction of Orthogonal Overlapping Pulses for Impulse Radio Communications

    Masaru KAMADA  Semih OZLEM  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3121-3129

    A procedure is developed to construct a time-limited pulse for its use in the short-range impulse radio communications. The even-numbered shifts of the pulse constitute a train of overlapping pulses. The pulses are intentionally made orthogonal to the second derivative of one another. This orthogonality makes it possible to detect the received pulses, which are assumed to be the second derivative of the transmitted pulses, by means of correlation with the original pulses. An example pulse is presented that complies with the FCC regulation for indoor ultra-wide bandwidth radio communications.

  • An Inhibitory Neural-Network Circuit Exhibiting Noise Shaping with Subthreshold MOS Neuron Circuits

    Akira UTAGAWA  Tetsuya ASAI  Tetsuya HIROSE  Yoshihito AMEMIYA  

     
    PAPER-Neuron and Neural Networks

      Vol:
    E90-A No:10
      Page(s):
    2108-2115

    We designed subthreshold analog MOS circuits implementing an inhibitory network model that performs noise-shaping pulse-density modulation (PDM) with noisy neural elements, with the aim of developing a possible ultralow-power one-bit analog-to-digital converter. The static and dynamic noises given to the proposed circuits were obtained from device mismatches of current sources (transistors) and externally applied random spike currents, respectively. Through circuit simulations we confirmed that the circuit exhibited noise-shaping properties, and signal-to-noise ratio (SNR) of the network was improved by 7.9 dB compared with that of the uncoupled network as a result of noise shaping.

  • Covariance Shaping Least-Squares Location Estimation Using TOA Measurements

    Ann-Chen CHANG  Chin-Min CHUNG  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:3
      Page(s):
    691-693

    Localization of mobile terminals has received considerable attention in wireless communications. In this letter, we present a covariance shaping least squares (CSLS) estimator using time-of-arrival measurements of the signal from the mobile station received at three or more base stations. It is shown that the CSLS estimator yields better performance than the other LS estimators at low signal-to-noise ratio conditions.

  • MIMO Zero-Forcing Equalizer for BFDM/OQAM Systems in Time-Frequency Dispersive Channels

    Bayarpurev MONGOL  Takaya YAMAZATO  Hiraku OKADA  Masaaki KATAYAMA  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3114-3122

    Pulse-shaping OFDM is well-known that it performs well in a mobile environment compared with conventional OFDM. However, in a highly mobile environment intersymbol and intercarrier interferences (ISI/ICIs) increase and can no longer be neglected. These ISI/ICIs deteriorate the performance of the systems. Proper channel equalization is needed for further improvement of the systems. In this paper, a more general case, namely Biorthogonal Frequency Division System based on Offset QAM (BFDM/OQAM) is considered. We propose a multi-input multi-output (MIMO) transversal filter to equalize the time-frequency dispersive channel. Tap weights are calculated using the zero-forcing (ZF) algorithm. We also propose maximum-likelihood channel estimator and its low-complexity version. The proposed system can significantly improve the performance of BFDM/OQAM systems in the highly mobile environment.

  • Efficient Algorithms for Constructing a Pyramid from a Terrain

    Jinhee CHUN  Kunihiko SADAKANE  Takeshi TOKUYAMA  

     
    PAPER-Computational Geometry

      Vol:
    E89-D No:2
      Page(s):
    783-788

    In [5], the following pyramid construction problem was proposed: Given nonnegative valued functions ρ and µ in d variables, we consider the optimal pyramid maximizing the total parametric gain of ρ against µ. The pyramid can be considered as the optimal unimodal approximation of ρ relative to µ, and can be applied to hierarchical data segmentation. In this paper, we give efficient algorithms for a couple of two-dimensional pyramid construction problems.

  • On the Use of Wavelet Packets in Ultra Wideband Pulse Shape Modulation Systems

    Stephane CIOLINO  Mohammad GHAVAMI  Hamid AGHVAMI  

     
    PAPER-Pulse Shape

      Vol:
    E88-A No:9
      Page(s):
    2310-2317

    This paper proposes wavelet packets for use in ultra wideband communications. The pulse shapes that are generated are quasi orthogonal and have almost identical time duration. After normalization, an M-ary signaling set can be constructed allowing higher data rate. Finally, the performance of such a system when multipath propagation occurs is investigated by computer simulations. In order to combat multipath fading, a Rake receiver using coherent channel estimation is designed. This channel estimation is carried out using adaptive algorithms such as least-mean square (LMS), normalized least-mean square (NLMS), or recursive least square (RLS) algorithms which adapt the received signal given a reference signal.

  • Applying Spiking Neural Nets to Noise Shaping

    Christian MAYR  Rene SCHUFFNY  

     
    PAPER-Neural Networks and Fuzzy Systems

      Vol:
    E88-D No:8
      Page(s):
    1885-1892

    In recent years, there has been an increased focus on the mechanics of information transmission in spiking neural networks. Especially the Noise Shaping properties of these networks and their similarity to Delta-Sigma Modulators has received a lot of attention. However, very little of the research done in this area has focused on the effect the weights in these networks have on the Noise Shaping properties and on post-processing of the network output signal. This paper concerns itself with the various modes of network operation and beneficial as well as detrimental effects which the systematic generation of network weights can effect. Also, a method for post-processing of the spiking output signal is introduced, bringing the output signal more in line with conventional Delta-Sigma Modulators. Relevancy of this research to industrial application of neural nets as building blocks of oversampled A/D converters is shown. Also, further points of contention are listed, which must be thoroughly researched to add to the above mentioned applicability of spiking neural nets.

  • Adaptive CDV Compensation Algorithm for Satellite Networks

    Tae-Hee KIM  Kwan-Woong KIM  Jae-Hoon KIM  Ho-Jin LEE  

     
    PAPER-Satellite Communication

      Vol:
    E88-B No:8
      Page(s):
    3401-3407

    In this paper, we propose an adaptive compensation algorithm to compensate cell delay variation (CDV) occurring during ATM/TDMA transition in a satellite ATM network. The proposed CDV compensation algorithm uses two types of additional information: cell position information (Cp)--indicating the number of cells (N) arriving within a control unit time (Tc) and positions of cells at a given time--and the number of cells in bursts--to take into account the characteristics of localized bursts. To evaluate the performance of the proposed algorithm, we performed a computer simulation based on an OPNET environment, using the Markov modulated Poisson process (MMPP) traffic model and assessed its effectiveness from varied standpoints. The results of the performance testing indicate that the proposed algorithm, while requiring significantly less additional information than previous CDV compensation algorithms, is able to more efficiently compensate CDV in localized burst traffic than the previous ones.

  • Design of High-Order Noise-Shaping FIR Filters for Overload-Free Stable Single- and Multi-Bit Data Converters

    Mitsuhiko YAGYU  Akinori NISHIHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E87-A No:12
      Page(s):
    3327-3333

    This paper presents optimum and sub-optimal designs of noise-shaping FIR filters for single- and multi-bit data converters. In the designs, only three parameters, the number of taps, oversampling ratio (OSR) and l1-norm of the filter coefficients are specified, and the in-band peak of the amplitude response is minimized under the specifications. The minimization problem is formulated with the overload-free condition, which guarantees the rigorous stability, and an overload-free converter generates no distortion in any output signals. In the optimum design, the minimization problem is directly and exactly solved, but the sub-optimal method solves this problem by iteratively utilizing the simplex method. The iterative sub-optimal method without the exact optimality is far faster and more efficient than the optimum method. In design examples, optimum and sub-optimal noise-shaping FIR filters for single- and multi-bit data converters are designed, and their optimal performance is revealed. For single-bit data converters with OSR 64, a noise-shaping FIR filter is designed and then shown to achieve a signal to noise and distortion ratio (SNDR) 107.6 [dB] in the band of interest.

  • Flexible Prototyping Platform for Synthesis of Constant Envelope Spread Spectrum (CE-SS) Waveforms

    Colm NELLIGAN  Michael Peter KENNEDY  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2196-2202

    This paper deals with CE-SS (Constant-Envelope Spread Spectrum) signals, focusing on a novel generation technique based upon using digital processing blocks to drive a frequency modulator with a random sequence. The system described herein allows for flexibility in achieving a variety of user defined goal spectra. The foundation upon which this work is built was laid by Callegari et al. who introduced a novel synthesis procedure for 'non-stationary' modulations. This novel synthesis technique uses an iterative algorithm to arrive at an output spectrum which is a good approximation to a user-defined goal spectrum. The architecture which this paper details uses programmable logic to tune the system parameters in striving towards user defined goal spectra. The architecture can generate CE-SS waveforms whose spectra match those which the aforementioned algorithm deems achievable.

  • A Study of Band-Limited Chip Waveforms for Asynchronous DS-CDMA Systems

    Ha H. NGUYEN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E87-A No:8
      Page(s):
    2185-2188

    This letter studies the impact of chip waveform shaping on the multiple access interference (MAI) in band-limited direct sequence code-division multiple access (DS-CDMA) systems. The family of band-limited waveforms with zero interchip interference (ICI) and with an excess bandwidth β in the range 0β 1 is considered. A criterion for the performance comparison of various band-limited chip waveforms based on the elementary density function is established. The effect of varying the roll-off factor of a band-limited chip waveform on the MAI level is also investigated.

  • A Noise-Shaping Algorithm of Multi-bit DAC Nonlinearities in Complex Bandpass ΔΣAD Modulators

    Hao SAN  Haruo KOBAYASHI  Shinya KAWAKAMI  Nobuyuki KUROIWA  

     
    PAPER

      Vol:
    E87-A No:4
      Page(s):
    792-800

    This paper presents a technique for improving the SNR and resolution of complex bandpass ΔΣADCs which are used for wireless communication systems such as cellular phone, wireless LAN and Bluetooth. Oversampling and noise-shaping are used to achieve high accuracy of a ΔΣAD modulator. However when a multi-bit internal DAC is used inside a modulator, nonlinearities of the DAC are not noise-shaped and the SNR of the ΔΣADC degrades. For the conversion of complex intermediate frequency (IF) input signals, a complex bandpass ΔΣAD modulator can provide superior performance to a pair of real bandpass ΔΣAD modulators of the same order. This paper proposes a new noise-shaping algorithm--implemented by adding simple digital circuitry--to reduce the effects of nonlinearities in multi-bit DACs of complex bandpass ΔΣAD modulators. We have performed simulation with MATLAB to verify the effectiveness of the algorithm, and the results show that the proposed algorithm can improve the SNR of a complex bandpass ΔΣADC with nonlinear internal multi-bit DACs.

  • A Shaper for Non-Real Time ATM Traffic

    Tae-Kyung CHO  Tae-Woo KIM  Myung-Ryul CHOI  

     
    LETTER-Network

      Vol:
    E87-B No:3
      Page(s):
    780-782

    The authors present a shaper for handling non-real time cell traffic which can avoid the cell loss caused by the policing function at the next hop. A state-dependent probabilistic scheduling algorithm which selects a proper queue for cell transmission is introduced. For the purpose of performance evaluation, the cell loss ratio of the proposed shaper is evaluated by simulation.

  • A Low Cost Reconfigurable Architecture for a UMTS Receiver

    Ronny VELJANOVSKI  Aleksandar STOJCEVSKI  Jugdutt SINGH  Aladin ZAYEGH  Michael FAULKNER  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3441-3451

    A novel reconfigurable architecture has been proposed for a mobile terminal receiver that can drastically reduce power dissipation dependant on adjacent channel interference. The proposed design can automatically scale the number of filter coefficients and word length respectively by monitoring the in-band and out-of-band powers. The new architecture performance was evaluated in a simulation UTRA-TDD environment because of the large near far problem caused by adjacent channel interference from adjacent mobiles and base stations. The UTRA-TDD downlink mode was examined statistically and results show that the reconfigurable architectures can save an average of up to 75% power dissipation respectively when compared to a fixed filter length of 57 and word length of 16 bits. This power saving only applies to the filter and ADC, not the whole receiver. This will prolong talk and standby time in a mobile terminal. The average number of taps and bits were calculated to be 14.98 and 10 respectively, for an outage of 97%.

  • Adaptive RF-Photonic Arbitrary Waveform Generator

    Jason CHOU  Yan HAN  Bahram JALALI  

     
    INVITED PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1226-1229

    The system uses spectral shaping of a supercontinuum source followed by wavelength-to-time mapping to generate ultra wideband RF waveforms with arbitrary modulation. It employs an adaptive computer control to mitigate the non-ideal features inherent in the optical source and in the spectrum modulation process. As proof of concept, ultra-wideband frequency hopped CDMA waveforms are demonstrated.

21-40hit(60hit)