The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] source model(11hit)

1-11hit
  • Simulating the Three-Dimensional Room Transfer Function for a Rotatable Complex Source

    Bing BU  Changchun BAO  Maoshen JIA  

     
    LETTER-Engineering Acoustics

      Vol:
    E100-A No:11
      Page(s):
    2487-2492

    This letter proposes an extended image-source model to simulate the room transfer function for a rotatable complex source in a three-dimensional reverberant room. The proposed model uses spherical harmonic decomposition to describe the exterior sound field from the complex source. Based on “axis flip” concept, the mirroring relations between the source and images are summarized by a unified mirroring operator that occurs on the soundfield coefficients. The rotation movement of the source is taken into account by exploiting the rotation property of spherical harmonics. The accuracy of our proposed model is verified through the appropriate simulation examples.

  • A Source Model and Experimental Validation for Electromagnetic Noises from Electrostatic Discharge Generator

    Takeshi ISHIDA  Yukihiro TOZAWA  Mutsumu TAKAHASHI  Fengchao XIAO  Yoshio KAMI  Osamu FUJIWARA  Shuichi NITTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:2
      Page(s):
    317-323

    Electrostatic discharge (ESD) generators cause electromagnetic (EM) noises not only at ESD tests but also even before and after the tests. This may provide inconsistent test results, but the mechanism has not been well examined. To explain the mechanism qualitatively, we investigated a generation source model of EM noises from an ESD generator in conjunction with the functional control sequences of built-in relay switches and the DC high voltage power supply. To validate this model, we used a magnetic field probe to measure the induced EM noises before, during, and after contact and air discharges in accordance with the corresponding timing of the functional control sequences. As a result, we confirmed that the EM noises are induced when the relay switches operate before and at ESD testing and after ESD tests for both contact and air discharges. In addition, we found that the noise peaks due to contact discharges increase with charge voltages, and the peaks just before and at the testing are relatively larger than the ones after the tests, while the peaks of the induced noises at the air discharge testing do not always increase with charge voltages, but reach a maximum at 3kV. In addition, the peaks of the induced noises at the air discharge testing become smaller than either the peaks just before the testing and those after the tests at charge voltages above 6kV. This suggests that the EM noises just before ESD testing and after the test may cause the EUT to malfunction when air discharge tests with charge voltages over 6kV are conducted. A new control sequence of the built-in relay switch was also proposed for reducing the EM noises after ESD tests, which was validated through noise measurements.

  • SSTA Scheme for Multiple Input Switching Case Based on Stochastic Collocation Method

    Gengsheng CHEN  Chenxi QIAN  Jun TAO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:12
      Page(s):
    2443-2450

    In this paper, a complete SSTA scheme is proposed to calculate the output waveform of a logic cell on any random selected point in the process variational space, or the mean value and variance of the output signal with very high accuracy and acceptable CPU cost. At first, Miller capacitances between the input nodes and internal nodes of a logic cell are introduced to construct the improved MCSM model so as to improve the modeling accuracy. Secondly, the stochastic collocation method jointed with the Modified Nested Sparse Grid technique is adopted for SSTA procedure to avoid the exponential increase of the collocation points number caused by tensor product. Thirdly, a Nominal waveform based Fast Simulation Method is developed to speedup the simulation on each collocation point. At last, Automatic Waveform Construction Technique is developed to construct the output waveform with the approximation points as little as possible to decrease the computational cost while guaranteeing high accuracy. Numerical results are also given to demonstrate the efficiency of the proposed algorithm.

  • Magnetic Field and Dosimetric Study at Intermediate Frequency Range Using the Coil Source Model

    Shinichiro NISHIZAWA  Friedrich LANDSTORFER  Kouta MATSUMOTO  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E89-C No:4
      Page(s):
    524-530

    In this paper, the magnetic field properties and the dosimetry at intermediate frequency (21 kHz) for an induction heater are investigated with the coil model, which is prescribed as substitute source model in the European standard EN50366 (CENELEC). The accuracy of the magnetic field vectors and the values of the induced current density, which are achieved with the coil model, are compared with the results of a realistic model of the induction heater obtained from the equivalent source model. It is shown that the coil model coincides well for the magnitude of the magnetic field strength around the induction heater. On the other hand, the dominant field vector of the coil model differs significantly from the real induction heater, which leads to induced current densities in the body model which are three time larger. Owing to these results, the applicability of the coil model prescribed in the EN50366 is confirmed for the induction heater.

  • Study of the Magnetic Field Properties around Household Appliances Using Coil Source Model as Prescribed by the European Standard EN50366

    Shinichiro NISHIZAWA  Friedrich LANDSTORFER  Osamu HASHIMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E87-C No:9
      Page(s):
    1636-1639

    In this paper, the magnetic field properties around household appliances are investigated with the single coil model and equivalent source model, which are used as main source models in the European standard EN50366 (CENELEC). The accuracy of the field properties is conducted for the coil model (defined in the EN50366), by comparing with the results of the equivalent source model, which allow the reproduction of the complicated inhomogeneous magnetic field around the appliance with full generality (i.e. supports three dimensional vector fields).

  • Accurate Source Model for MoM Analysis of Linear Antennas by Using Sinusoidal Reaction Matching Technique

    Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antenna and Propagation

      Vol:
    E86-B No:2
      Page(s):
    870-872

    A new source model for MoM analysis by using sinusoidal reaction matching technique is proposed for linear antenna analysis. This source model assumes a constant feeding gap and uniform electric field distribution inside the gap. The analysis results are compared with the results of the conventional models and measurement. It is found that the new model can incorporate the effect of the length of driving gap and is more accurate and more stable than that from the conventional source models. The proposed source model is simple and easy to use. This source model, together with the full kernel formulation, makes it possible to analyze the linear dipole antennas with no limitation of ratio of segment length to radius.

  • A Three-Dimensional Distributed Source Modeling and Direction of Arrival Estimation Using Two Linear Arrays

    Seong-Ro LEE  Myeong-Soo CHOI  Man-Won BANG  Iickho SONG  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:1
      Page(s):
    206-214

    A number of results on the estimation of direction of arrival have been obtained based on the assumption that the signal sources are point sources. Recently, it has been shown that signal source localization can be accomplished more adequately with distributed source models in some real surroundings. In this paper, we consider modeling of three-dimensional distributed signal sources, in which a source location is represented by the center angles and degrees of dispersion. We address estimation of the elevation and azimuth angles of distributed sources based on the proposed distributed source modeling in the three-dimensional space using two linear arrays. Some examples are included to more explicitly show the estimation procedures under the model: numerical results obtained by a MUSIC-based method with two uniform linear arrays are discussed.

  • An Efficient Simulator for Multiport Interconnects with Model Order Reduction Technique

    Hidemasa KUBOTA  Atsushi KAMO  Takayuki WATANABE  Hideki ASAI  

     
    PAPER

      Vol:
    E85-A No:6
      Page(s):
    1214-1219

    With the progress of integration of circuits and PCBs (Printed Circuit Boards), novel techniques have been required for verification of signal integrity. Noise analysis of the power/ground planes is one of the most important issues. This paper describes a high-speed simulator for PCBs which contain the interconnects with nonlinear terminations. This simulator is based on the environmental tool ASSIST (Assistant System for Simulation Study) constructed for development of the circuit simulators, and is combined with PRIMA (Passive Reduced-Order Interconnect Macromodeling Algorithm). In this simulator, an efficient implementation of PRIMA is considered with using a voltage-controlled current source (VCCS) model. Finally, this simulator is applied to the analysis of power/ground planes of the simple PCBs, and the validity is verified.

  • Estimation of Two-Dimensional DOA under a Distributed Source Model and Some Simulation Results

    Seong Ro LEE  Iickho SONG  Yong Up LEE  Taejoo CHANG  Hyung-Myung KIM  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E79-A No:9
      Page(s):
    1475-1485

    Most research on the estimation of direction of arrival (DOA) has been performed based on the assumption that the signal sources are point sources. In some real surroundings, signal source localization can more adequately be accomplished with distributed source models. When the signal sources are distributed over an area, we cannot directly use well-known DOA estimation methods, because these methods are established based on the point source assumption. In this paper, we propose a 3-dimensional distributed signal source model, in which a source is represented by two parameters, the center angle and degree of dispersion. Then, we address the estimation of the elevation and azimuth angles of distributed sources based on the parametric distributed source modeling in the 3-dimensional space.

  • An Analytical Approach to Model Indirect Effect Caused by Electrostatic Discharge

    Osamu FUJIWARA  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    483-489

    It is well recognized that the electromagnetic interference due to indirect electrostatic discharge (ESD) is not always proportional to the ESD voltage and also that the lower voltage ESD sometimes causes the more serious failure to high-tech information equipment. In order to theoretically examine the peculiar phenomenon, we propose an analytical approach to model the indirect ESD effect. A source ESD model is given here using the spark resistance presented by Rompe and Weizel. Transient electromagnetic fields due to the ESD event are analyzed, which are compared with the experimental data carefully given by Wilson and Ma. A model experiment for indirect ESD is also conducted to confirm the validity of the ESD model presented here.

  • Simultaneous Estimation of Vocal Tract and Voice Source Parameters Based on an ARX Model

    Wen DING  Hideki KASUYA  Shuichi ADACHI  

     
    PAPER

      Vol:
    E78-D No:6
      Page(s):
    738-743

    A novel adaptive pitch-synchronous analysis method is proposed to estimate simultaneously vocal tract (formant/antiformant) and voice source parameters from speech waveforms. We use the parametric Rosenberg-Klatt (RK) model to generate a glottal waveform and an autoregressive-exogenous (ARX) model to represent voiced speech production process. The Kalman filter algorithm is used to estimate the formant/antiformant parameters from the coefficient of the ARX model, and the simulated annealing method is employed as a nonlinear optimization approach to estimate the voice source parameters. The two approaches work together in a system identification procedure to find the best set of the parameters of both the models. The new method has been compared using synthetic speech with some other approaches in terms of accuracy of estimated parameter values and has been proved to be superior. We also show that the proposed method can estimate accurately the parameters from natural speech sounds. A major application of the analysis method lies in a concatenative formant synthesizer which allows us to make flexible control of voice quality of synthetic speech.