Abdorasoul GHASEMI S. Mohammad RAZAVIZADEH
A simple distributed Medium Access Control (MAC) protocol for cognitive wireless networks is proposed. It is assumed that the network is slotted, the spectrum is divided into a number of channels, and the primary network statistical aggregate traffic model on each channel is given by independent Bernoulli random variables. The objective of the cognitive MAC is to maximize the exploitation of the channels idle time slots. The cognitive users can achieve this aim by appropriate hopping between the channels at each decision stage. The proposed protocol is based on the rule of least failures that is deployed by each user independently. Using this rule, at each decision stage, a channel with the least number of recorded collisions with the primary and other cognitive users is selected for exploitation. The performance of the proposed protocol for multiple cognitive users is investigated analytically and verified by simulation. It is shown that as the number of users increases the user decision under this protocol comes close to the optimum decision to maximize its own utilization. In addition, to improve opportunity utilization in the case of a large number of cognitive users, an extension to the proposed MAC protocol is presented and evaluated by simulation.
Hyoungsuk JEON Sooyeol IM Youmin KIM Seunghee KIM Jinup KIM Hyuckjae LEE
The public safety spectrum is generally under-utilized due to the unique traffic characteristics of bursty and mission critical. This letter considers the application of dynamic spectrum access (DSA) to the combined spectrum of public safety (PS) and commercial (CMR) users in a common shared network that can provide both PS and CMR services. Our scenario includes the 700 MHz Public/Private Partnership which was recently issued by the Federal Communications Commission. We first propose an efficient DSA mechanism to coordinate the combined spectrum, and then establish a call admission control that reflects the proposed DSA in a wideband code division multiple access based network. The essentials of our proposed DSA are opportunistic access to the public safety spectrum and priority access to the commercial spectrum. Simulation results show that these schemes are well harmonized in various network environments.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the analysis and design of a reflection-cancelling transverse slot-pair array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. For the transverse slot array, the slot spacings with more than one free-space wavelength cause the grating-lobes. The baffles suppress the grating-lobes effectively. A one-dimensional slot array is extracted from the 2D array with in-phase excitation by assuming periodicity in the transversal direction. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot-pairs, which greatly accelerate the iterations process. Experiments at 25.3 GHz demonstrate the suppression of the grating lobes to the level less than -20.0 dB and also the good uniformity of the aperture field distribution.
In a Direct-Sequence/Spread-Spectrum (DS/SS) system, a RAKE receiver is used to improve a bit error rate (BER) performance. The RAKE receiver can collect more signal energy through independent paths and achieve path diversity. The RAKE receiver obtains further diversity gain through fractional sampling. However, the power consumption of the RAKE receiver increases in proportion to a sampling rate and does not always maximize the signal-to-noise ratio (SNR). Therefore, sampling rate selection schemes have been proposed to reduce the average sampling rate without degrading the BER. These schemes select the tap positions and the sampling rate depending on channel conditions and the power consumption can be reduced. In this paper, sampling rate selection schemes for the DS/SS system are investigated through an experiment since there have been no numerical results through an experiment. Numerical results show that the power consumption can be reduced even through the experiment without the degradation of the BER.
Yanbing LIU Jun HUANG Zhangxiong LIU
The cognitive radio technique promises to manage and allocate the scarce radio spectrum in the highly varying and disparate modern environments. This paper considers a cognitive radio scenario composed of two queues for the primary (licensed) users and cognitive (unlicensed) users. According to the Markov process, the system state equations are derived and an optimization model for the system is proposed. Next, the system performance is evaluated by calculations which show the rationality of our system model. Furthermore, discussions among different parameters for the system are presented based on the experimental results.
Min-Hua HO Hao-Hung HO Mingchih CHEN
This paper presents the dual-band bandpass filters (BPFs) design composed of λ/2 and symmetrically/asymmetrically paired λ/4 stepped impedance resonators (SIRs) for the WLAN applications. The filters cover both the operating frequencies of 2.45 and 5.2 GHz. The dual-coupling mechanism is used in the filter design to provide alternative routes for signals of selected frequencies. A prototype filter is composed of λ/2 and symmetrical λ/4 SIRs. The enhanced wide-stopband filter is then developed from the filter with the symmetrical λ/4 SIRs replaced by the asymmetrical ones. The asymmetrical λ/4 SIRs have their higher resonances frequencies isolated from the adjacent I/O SIRs and extend the enhanced filter an upper stopband limit beyond ten time the fundamental frequency. Also, the filter might possess a cross-coupling structure which introduces transmission zeros by the passband edges to improve the signal selectivity. The tapped-line feed is adopted in this circuit to create additional attenuation poles for improving the stopband rejection levels. Experiments are conducted to verify the circuit performance.
Hiromasa FUJII Hitoshi YOSHINO
A spectrum sharing method is proposed for systems that share the same frequency band or adjacent bands with services that have different priorities. The proposed method adaptively controls transmission power according to information provided by the high-priority system receivers. We give the theoretical capacities achieved by low-priority systems when the proposed method and a conventional method (constant transmit power) are applied. Numerical results confirm that the proposed method attains 1.5-2 times larger capacity than the conventional method.
A critical problem after a natural/manmade disaster is to provide immediate post-disaster communication links between the disaster victims and some overlay networks. This paper proposes a novel scheme that uses the surviving Mobile handSets (MS) as sensing nodes to form an auto-configured Hierarchical Cognitive Radio Network (H-CRN). The implementation of this H-CRN is explained through detailed problem scenario statement and step-by-step implementation of automatic identification of emergency situation by the MS nodes. An overview of the cross-layer framework used by the MS nodes is also presented. This novel scheme is tested through some hypothesis along with probability calculations for successful identification of emergency situation, formation of ad hoc group and Emergency Beacon Message (EBM) transmission.
Siyang LIU Gang XIE Zhongshan ZHANG Yuanan LIU
Two adaptive energy detectors are proposed for cognitive radio systems to detect the primary users. Unlike the conventional energy detector (CED) where a decision is made after receiving all samples, our detectors make a decision with the sequential arrival of samples. Hence, the sample size of the proposed detectors is adaptive. Simulation results show that for a desired performance, the average sample size of the proposed detectors is much less than that of the CED. Therefore, they are more agile than the CED.
Ning HAN Sung Hwan SOHN Jae Moung KIM
The key issue in cognitive radio is to design a reliable spectrum sensing method that is able to detect the signal in the target channel as well as to recognize its type. In this paper, focusing on classifying different orthogonal frequency-division multiplexing (OFDM) signals, we propose a two-step detection and identification approach based on the analysis of the cyclic autocorrelation function. The key parameters to separate different OFDM signals are the subcarrier spacing and symbol duration. A symmetric peak detection method is adopted in the first step, while a pulse detection method is used to determine the symbol duration. Simulations validate the proposed method.
Peng WANG Xiang CHEN Shidong ZHOU Jing WANG
In spectrum-sharing systems where the secondary user (SU) opportunistically accesses the primary user (PU)'s licensed channel, the SU should satisfy both the transmit power constraint of the SU transmitter and the received power constraint at the PU receiver. This letter studies the ergodic capacity of spectrum-sharing systems in fading channels. The ergodic capacity expression along with the optimal power allocation scheme is derived considering both the average transmit and received power constraints. The capacity function in terms of the two power constraints is found to be divided into transmit power limited region, received power limited region and dual limited region. Numerical results in Rayleigh fading channels are presented to verify our analysis.
Ibuki MORI Yoshihisa YAMADA Santhos A. WIBOWO Masashi KONO Haruo KOBAYASHI Yukihiro FUJIMURA Nobukazu TAKAI Toshio SUGIYAMA Isao FUKAI Norihisa ONISHI Ichiro TAKEDA Jun-ichi MATSUDA
This paper proposes spread-spectrum clock modulation algorithms for EMI reduction in digitally-controlled DC-DC converters. In switching regulators using PWM, switching noise and harmonic noise concentrated in a narrow spectrum around the switching frequency can cause severe EMI. Spread-spectrum clock modulation can be used to minimize EMI. In conventional switching regulators using analog control it is very difficult to realize complex spread-spectrum clocking, however this paper shows that it is relatively easy to implement spread-spectrum EMI-reduction using digital control. The proposed algorithm was verified using a power converter simulator (SCAT).
Na Young KIM Sujin KIM Youngok KIM Joonhyuk KANG
This letter proposes a high precision ranging scheme based on the time of arrival estimation technique for the IEEE 802.15.4a chirp spread spectrum system. The proposed scheme consists of a linear channel impulse response estimation process with the zero forcing or minimum mean square error technique and the multipath delay estimation process with matrix pencil algorithm. The performance of the proposed scheme is compared with that of a well known MUSIC algorithm in terms of computational complexity and ranging precision. Simulation results demonstrate that the proposed scheme outperforms the MUSIC algorithm even though it has comparatively lower computational complexity.
Saed SAMADI Kaveh MOLLAIYAN Akinori NISHIHARA
Two discrete-time Wirtinger-type inequalities relating the power of a finite-length signal to that of its circularly-convolved version are developed. The usual boundary conditions that accompany the existing Wirtinger-type inequalities are relaxed in the proposed inequalities and the equalizing sinusoidal signal is free to have an arbitrary phase angle. A measure of this sinusoidal signal's power, when corrupted with additive noise, is proposed. The application of the proposed measure, calculated as a ratio, in the evaluation of the power of a sinusoid of arbitrary phase with the angular frequency π/N, where N is the signal length, is thoroughly studied and analyzed under additive noise of arbitrary statistical characteristic. The ratio can be used to gauge the power of sinusoids of frequency π/N with a small amount of computation by referring to a ratio-versus-SNR curve and using it to make an estimation of the noise-corrupted sinusoid's SNR. The case of additive white noise is also analyzed. A sample permutation scheme followed by sign modulation is proposed for enlarging the class of target sinusoids to those with frequencies M π/N, where M and N are mutually prime positive integers. Tandem application of the proposed scheme and ratio offers a simple method to gauge the power of sinusoids buried in noise. The generalization of the inequalities to convolution kernels of higher orders as well as the simplification of the proposed inequalities have also been studied.
Eiichi YOSHIKAWA Tomoaki MEGA Takeshi MORIMOTO Tomoo USHIO Zen KAWASAKI
The purpose of this study is the real-time estimation of Doppler spectral moments for precipitation in the presence of ground clutter overlap. The proposed method is a frequency domain approach that uses a Gaussian model both to remove clutter spectrum and to estimate weather spectrum. The main advantage of this method is that it does not use processes like several fitting procedures and enables to estimate profiles of precipitation in a short processing time. Therefore this method is efficient for real-time radar observation with high range and time resolution. The performance of this method is evaluated based on simulation data and the observation data acquired by the Ku-band broad band radar (BBR) [1].
We propose a new filter method for feature selection for SELDI-TOF mass spectrum datasets. In the method, a new relevance index was defined to represent the goodness of a feature by considering the distribution of samples based on the counts. The relevance index can be used to obtain the feature sets for classification. Our method can be applied to mass spectrum datasets with extremely high dimensions and process the clinical datasets with practical sizes in acceptable calculation time since it is based on simple counting of samples. The new method was applied to the three public mass spectrum datasets and showed better or comparable results than conventional filter methods.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the formulation for the evaluation of external coupling in the alternating-phase feed single-layer slotted waveguide array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. A one-dimensional slot array is extracted from the array by assuming the periodicity in transversal direction and introducing the perfect electric conductors in the external region. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot pair which accelerate the iteration. Experiment at 25.3 GHz demonstrates good uniformity of the aperture field distribution as well as the effects of the baffles. The directivity is 32.7 dB which corresponds to the aperture efficiency 90.5% and the reflection is below -15.0 dB over 1.3 GHz.
In this letter we propose a robust detection algorithm for audio watermarking for copyright protection. The watermark is embedded in the time domain of an audio signal by the normally used spread spectrum technique. The scheme of detection is an improvement of the conventional correlation detector. A high-pass filter is applied along with the linear prediction error filter for whitening the audio signal and an adaptive threshold is chosen for decision comparing. Experimental results show that our detection algorithm outperforms the conventional one not only because it improves the robustness to normal attacks but also because it can provide the robustness to time-invariant pitch-scale modification.
Junyang SHEN Gang XIE Siyang LIU Lingkang ZENG Jinchun GAO Yuanan LIU
Amidst conflicting views about whether soft cooperative energy detection scheme (SCEDS) outperforms hard cooperative energy detection scheme (HCEDS) greatly in cognitive radio, we establish the bridge that mathematically connects SCEDS and HCEDS by closed approximations. Through this bridge, it is demonstrate that, if the number of detectors of HCEDS is 1.6 times as that of SCEDS, they have nearly the same performance which is confirmed by numerical simulations, enabling a quantitative evaluation of the relation between them and a resolution of the conflicting views.
In this paper we show some new look at large deviation theorems from the viewpoint of the information-spectrum (IS) methods, which has been first exploited in information theory, and also demonstrate a new basic formula for the large deviation rate function in general, which is expressed as a pair of the lower and upper IS rate functions. In particular, we are interested in establishing the general large deviation rate functions that are derivable as the Fenchel-Legendre transform of the cumulant generating function. The final goal is to show, under some mild condition, a necessary and sufficient condition for the IS rate function to be derivable as the Fenchel-Legendre transform of the cumulant generating function, i.e., to be a rate function of Gartner-Ellis type.