The search functionality is under construction.

Keyword Search Result

[Keyword] statistical static timing analysis(10hit)

1-10hit
  • Statistical Timing Modeling Based on a Lognormal Distribution Model for Near-Threshold Circuit Optimization

    Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1455-1466

    Near-threshold computing has emerged as one of the most promising solutions for enabling highly energy efficient and high performance computation of microprocessors. This paper proposes architecture-level statistical static timing analysis (SSTA) models for the near-threshold voltage computing where the path delay distribution is approximated as a lognormal distribution. First, we prove several important theorems that help consider architectural design strategies for high performance and energy efficient near-threshold computing. After that, we show the numerical experiments with Monte Carlo simulations using a commercial 28nm process technology model and demonstrate that the properties presented in the theorems hold for the practical near-threshold logic circuits.

  • A New Delay Distribution Model with a Half Triangular Distribution for Statistical Static Timing Analysis

    Shuji TSUKIYAMA  Masahiro FUKUI  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2542-2552

    The long-term degradation due to aging such as NBTI (Negative Bias Temperature Instability) is a hot issue in the current circuit design using nanometer process technologies, since it causes a delay fault in the field. In order to resolve the problem, we must estimate delay variation caused by long-term degradation in design stage, but over estimation must be avoided so as to make timing design easier. If we can treat such a variation statistically, and if we treat it together with delay variations due to process variability, then we can reduce over margin in timing design. Moreover, such a statistical static timing analyzer treating process variability and long-term degradation together will help us to select an appropriate set of paths for which field testing are conducted to detect delay faults. In this paper, we propose a new delay model with a half triangular distribution, which is introduced for handling a random factor with unknown distribution such as long term degradation. Then, we show an algorithm for finding the statistical maximum, which is one of key operations in statistical static timing analysis. We also show a few experimental results demonstrating the effect of the proposed model and algorithm.

  • Parallel Acceleration Scheme for Monte Carlo Based SSTA Using Generalized STA Processing Element

    Hiroshi YUASA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    473-481

    We propose a novel acceleration scheme for Monte Carlo based statistical static timing analysis (MC-SSTA). MC-SSTA, which repeatedly executes ordinary STA using a set of randomly generated gate delay samples, is widely accepted as an accuracy reference. A large number of random samples, however, should be processed to obtain accurate delay distributions, and software implementation of MC-SSTA, therefore, takes an impractically long processing time. In our approach, a generalized hardware module, the STA processing element (STA-PE), is used for the delay evaluation of a logic gate, and netlist-specific information is delivered in the form of instructions from an SRAM. Multiple STA-PEs can be implemented for parallel processing, while a larger netlist can be handled if only a larger SRAM area is available. The proposed scheme is successfully implemented on Altera's Arria II GX EP2AGX125EF35C4 device in which 26 STA-PEs and a 624-port Mersenne Twister-based random number generator run in parallel at a 116 MHz clock rate. A speedup of far more than10 is achieved compared to conventional methods including GPU implementation.

  • Power Distribution Network Optimization for Timing Improvement with Statistical Noise Model and Timing Analysis

    Takashi ENAMI  Takashi SATO  Masanori HASHIMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2261-2271

    We propose an optimization method for power distribution network that explicitly deals with timing. We have found and focused on the facts that decoupling capacitance (decap) does not necessarily improve gate delay depending on the switching timing within a cycle and that power wire expansion may locally degrade the voltage. To resolve the above facts, we devised an efficient sensitivity calculation of timing to decap size and power wire width for guiding optimization. The proposed method, which is based on statistical noise modeling and timing analysis, accelerates sensitivity calculation with an approximation and adjoint sensitivity analysis. Experimental results show that decap allocation based on the sensitivity analysis efficiently minimizes the worst-case circuit delay within a given decap budget. Compared to the maximum decap placement, the delay improvement due to decap increases by 3.13% even while the total amount of decaps is reduced to 40%. The wire sizing with the proposed method also efficiently reduces required wire resource necessary to attain the same circuit delay by 11.5%.

  • A Body Bias Clustering Method for Low Test-Cost Post-Silicon Tuning

    Shuta KIMURA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E95-A No:12
      Page(s):
    2292-2300

    Post-silicon tuning is attracting a lot of attention for coping with increasing process variation. However, its tuning cost via testing is still a crucial problem. In this paper, we propose tuning-friendly body bias clustering with multiple bias voltages. The proposed method provides a small set of compensation levels so that the speed and leakage current vary monotonically according to the level. Thanks to this monotonic leveling and limitation of the number of levels, the test-cost of post-silicon tuning is significantly reduced. During the body bias clustering, the proposed method explicitly estimates and minimizes the average leakage after the post-silicon tuning. Experimental results demonstrate that the proposed method reduces the average leakage by 25.3 to 51.9% compared to non clustering case. In a test case of four clusters, the number of necessary tests is reduced by 83% compared to the conventional exhaustive test approach. We reveal that two bias voltages are sufficient when only a small number of compensation levels are allowed for test-cost reduction. We also give an implication on how to synthesize a circuit to which post-silicon tuning will be applied.

  • A Statistical Maximum Algorithm for Gaussian Mixture Models Considering the Cumulative Distribution Function Curve

    Shuji TSUKIYAMA  Masahiro FUKUI  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E94-A No:12
      Page(s):
    2528-2536

    The statistical static timing analysis has been studied intensively in the last decade so as to deal with the process variability, and various techniques to represent distributions of timing information, such as a gate delay, a signal arrival time, and a slack, have been proposed. Among them, the Gaussian mixture model is distinguished from the others in that it can handle various correlations, non-Gaussian distributions, and slew distributions easily. However, the previous algorithm of computing the statistical maximum for Gaussian mixture models, which is one of key operations in the statistical static timing analysis, has a defect such that it produces a distribution similar to Gaussian in a certain case, although the correct distribution is far from Gaussian. In this paper, we propose a new algorithm for statistical maximum (minimum) operation for Gaussian mixture models. It takes the cumulative distribution function curve into consideration so as to compute accurate criticalities (probabilities of timing violation), which is important for detecting delay faults and circuit optimization with the use of statistical approaches. We also show some experimental results to evaluate the performance of the proposed method.

  • A Modified Nested Sparse Grid Based Adaptive Stochastic Collocation Method for Statistical Static Timing Analysis

    Xu LUO  Fan YANG  Xuan ZENG  Jun TAO  Hengliang ZHU  Wei CAI  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3024-3034

    In this paper, we propose a Modified nested sparse grid based Adaptive Stochastic Collocation Method (MASCM) for block-based Statistical Static Timing Analysis (SSTA). The proposed MASCM employs an improved adaptive strategy derived from the existing Adaptive Stochastic Collocation Method (ASCM) to approximate the key operator MAX during timing analysis. In contrast to ASCM which uses non-nested sparse grid and tensor product quadratures to approximate the MAX operator for weakly and strongly nonlinear conditions respectively, MASCM proposes a modified nested sparse grid quadrature to approximate the MAX operator for both weakly and strongly nonlinear conditions. In the modified nested sparse grid quadrature, we firstly construct the second order quadrature points based on extended Gauss-Hermite quadrature and nested sparse grid technique, and then discard those quadrature points that do not contribute significantly to the computation accuracy to enhance the efficiency of the MAX approximation. Compared with the non-nested sparse grid quadrature, the proposed modified nested sparse grid quadrature not only employs much fewer collocation points, but also offers much higher accuracy. Compared with the tensor product quadrature, the modified nested sparse grid quadrature greatly reduced the computational cost, while still maintains sufficient accuracy for the MAX operator approximation. As a result, the proposed MASCM provides comparable accuracy while remarkably reduces the computational cost compared with ASCM. The numerical results show that with comparable accuracy MASCM has 50% reduction in run time compared with ASCM.

  • Statistical Gate Delay Model for Multiple Input Switching

    Takayuki FUKUOKA  Akira TSUCHIYA  Hidetoshi ONODERA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3070-3078

    In this paper, we propose a calculation method of gate delay for SSTA (Statistical Static Timing Analysis) considering MIS (Multiple Input Switching). In SSTA, statistical maximum/minimum operation is necessary to calculate the latest/fastest arrival time of multiple input gate. Most SSTA approaches calculate the distribution in the latest/fastest arrival time under SIS (Single Input Switching assumption), resulting in ignoring the effect of MIS on the gate delay and the output transition time. MIS occurs when multiple inputs of a gate switch nearly simultaneously. Thus, ignoring MIS causes error in the statistical maximum/minimum operation in SSTA. We propose a statistical gate delay model considering MIS. We verify the proposed method by SPICE based Monte Carlo simulations. Experimental results show that the neglect of MIS effect leads to 80% error in worst case. The error of the proposed method is less than 20%.

  • Proposal of Metrics for SSTA Accuracy Evaluation

    Hiroyuki KOBAYASHI  Nobuto ONO  Takashi SATO  Jiro IWAI  Hidenari NAKASHIMA  Takaaki OKUMURA  Masanori HASHIMOTO  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    808-814

    With the recent advance of process technology shrinking, process parameter variation has become one of the major issues in SoC designs, especially for timing convergence. Recently, Statistical Static Timing Analysis (SSTA) has been proposed as a promising solution to consider the process parameter variation but it has not been widely used yet. For estimating the delay yield, designers have to know and understand the accuracy of SSTA. However, the accuracy has not been thoroughly studied from a practical point of view. This paper proposes two metrics to measure the pessimism/optimism of SSTA; the first corresponds to yield estimation error, and the second examines delay estimation error. We apply the metrics for a problem which has been widely discussed in SSTA community, that is, normal-distribution approximation of max operation. We also apply the proposed metrics for benchmark circuits and discuss about a potential problem originating from normal-distribution approximation. Our metrics indicate that the appropriateness of the approximation depends on not only given input distributions but also the target yield of the product, which is an important message for SSTA users.

  • A Performance Optimization Method by Gate Resizing Based on Statistical Static Timing Analysis

    Masanori HASHIMOTO  Hidetoshi ONODERA  

     
    PAPER-Performance Optimization

      Vol:
    E83-A No:12
      Page(s):
    2558-2568

    This paper discusses a gate resizing method for performance enhancement based on statistical static timing analysis. The proposed method focuses on timing uncertainties caused by local random fluctuation. Our method aims to remove both over-design and under-design of a circuit, and realize high-performance and high-reliability LSI design. The effectiveness of our method is examined by 6 benchmark circuits. We verify that our method can reduce the delay time further from the circuits optimized for minimizing the delay without the consideration of delay fluctuation.